JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SYNDETIC SEQUENCES AND DYNAMICS OF OPERATORS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SYNDETIC SEQUENCES AND DYNAMICS OF OPERATORS
Rezaei, Hamid;
  PDF(new window)
 Abstract
In the present paper, we show that a continuous linear operator T on a Frechet space satisfies the Hypercyclic Criterion with respect to a syndetic sequence must satisfy the Kitai Criterion. On the other hand, an operator, hereditarily hypercyclic with respect to a syndetic sequence must be mixing. We also construct weighted shift operators satisfying the Hypercyclicity Criterion which do not satisfy the Kitai Criterion. In other words, hereditarily hypercyclic operators without being mixing.
 Keywords
hypercyclic operator;hereditarily criterion;mixing operator;
 Language
English
 Cited by
 References
1.
F. Bayart and E. Matheron, Daynamics of Linear Operators, Cambridge University Press, Cambridge, 2009.

2.
F. Bayart and E. Matheron, Hypercyclic operators failing the hypercyclicity criterion on classical Banach spaces, J. Funct. Anal. 250 (2007), no. 2, 426-441. crossref(new window)

3.
J. Bes and A. Peris, Hereditarily hypercyclic operators, J. Funct. Anal. 167 (1999), no. 1, 94-112. crossref(new window)

4.
P. S. Bourdon and J. H. Shapiro, Cyclic phenomena for composition operators, Mem. Amer. Math. Soc. 125 (1997), no. 596, x+105 pp.

5.
K. C. Chan and J. H. Shapiro, The cyclic behavior of translation operators on Hilbert spaces of entire functions, Indiana Univ. Math. J. 40 (1991), no. 4, 1421-1449. crossref(new window)

6.
R. M. Gethner and J. H. Shapiro, Universal vectors for operators on spaces of holomorphic functions, Proc. Amer. Math. Soc. 100 (1987), no. 2, 281-288. crossref(new window)

7.
S. Grivaux, Hypercyclic operators, mixing operators, and the bounded steps problem, J. Operator Theory 54 (2005), no. 1, 147-168.

8.
G. Godefroy and J. H. Shapiro, Operators with dense invariant cyclic vector manifolds, J. Funct. Anal. 98 (1991), no. 2, 229-269. crossref(new window)

9.
C. Kitai, Invariant closed sets for linear operators, Ph.D. thesis, Univ. of Toronto, Toronto, 1982.

10.
A. Peris and L. Salvidia, Syndetically hypercyclic operators, Integral Equations Operator Theory 51 (2005), no. 2, 275-281. crossref(new window)

11.
H. Rezaei, Notes on dynamics of the adjoint of a weighted composition operator, Taiwanese J. Math. 14 (2010), no. 4, 1377-1384.

12.
S. Rolewicz, On orbits elements, Studia Math. 32 (1969), 17-22.

13.
M. de la Rosa and C. Read, A hypercyclic operator whose direct sum is not hypercyclic, preprint, 2006.

14.
F. Leon-Saavedra and A. Montes-Rodryguez, Linear structure of hypercyclic vectors, J. Funct. Anal. 148 (1997), no. 2, 524-545. crossref(new window)

15.
H. Salas, Hypercyclic weighted shifts, Trans. Amer. Math. Soc. 347 (1995), no. 3, 993-1004. crossref(new window)

16.
J. H. Shapiro, Notes on the dynamics of linear operators, unpublished notes.

17.
B. Yousefi and H. Rezaei, Hypercyclic property of weighted composition operators, Proc. Amer. Math. Soc. 135 (2007), no. 10, 3263-3271. crossref(new window)