ON THE EXISTENCE OF POSITIVE SOLUTION FOR A CLASS OF NONLINEAR ELLIPTIC SYSTEM WITH MULTIPLE PARAMETERS AND SINGULAR WEIGHTS

- Journal title : Communications of the Korean Mathematical Society
- Volume 27, Issue 3, 2012, pp.557-564
- Publisher : The Korean Mathematical Society
- DOI : 10.4134/CKMS.2012.27.3.557

Title & Authors

ON THE EXISTENCE OF POSITIVE SOLUTION FOR A CLASS OF NONLINEAR ELLIPTIC SYSTEM WITH MULTIPLE PARAMETERS AND SINGULAR WEIGHTS

Rasouli, S.H.;

Rasouli, S.H.;

Abstract

This study concerns the existence of positive solution for the following nonlinear system , where is a bounded smooth domain of with , 1 < < N, <, < and , , , , , are positive parameters. Here : are nondecresing continuous functions and for every A > 0. We discuss the existence of positive solution when and satisfy certain additional conditions. We use the method of sub-super solutions to establish our results.

Keywords

singular weights;nonlinear elliptic system;multiple parameters;

Language

English

Cited by

References

1.

G. A. Afrouzi and S. H. Rasouli, A remark on the existence of multiple solutions to a multiparameter nonlinear elliptic system, Nonlinear Anal. 71 (2009), no. 1-2, 445-455.

2.

G. A. Afrouzi and S. H. Rasouli, A remark on the linearized stability of positive solutions for systems involving the p-Laplacian, Positivity. 11 (2007), no. 2, 351-356.

3.

J. Ali and R. Shivaji, Positive solutions for a class of p-laplacian systems with multiple parameters, J. Math. Anal. Appl. 335 (2007), 1013-1019.

4.

J. Ali and R. Shivaji, An existence result for a semipositone problem with a sign-changing weight, Abstr. Appl. Anal. 2006 (2006), Art. ID 70692, 5 pp.

5.

J. Ali, R. Shivaji, and M. Ramaswamy, Multiple positive solutions for classes of elliptic systems with combined nonlinear effects, Differential Integral Equations 19 (2006), no. 6, 669-680.

6.

C. O. Alves and D. G. de Figueiredo, Nonvariational elliptic systems, Discrete Contin. Dyn. Syst. 8 (2002), no. 2, 289-302.

7.

A. Ambrosetti, J. G. Azorero, and I. Peral, Existence and multiplicity results for some nonlinear elliptic equations: a survey, Rend. Mat. Appl. (7) 20 (2000), 167-198.

8.

C. Atkinson and K. El Kalli, Some boundary value problems for the Bingham model, J. Non-Newtonian Fluid Mech. 41 (1992), 339-363.

9.

H. Bueno, G. Ercole, W. Ferreira, and A. Zumpano, Existence and multiplicity of positive solutions for the p-Laplacian with nonlocal coefficient, J. Math. Anal. Appl. 343 (2008), no. 1, 151-158.

10.

L. Caffarelli, R. Kohn, and L. Nirenberg, First order interpolation inequalities with weights, Compositio Math. 53 (1984), no. 3, 259-275.

11.

A. Canada, P. Drabek, and J. L. Gamez, Existence of positive solutions for some prob- lems with nonlinear diffusion, Trans. Amer. Math. Soc. 349 (1997), no. 10, 4231-4249.

12.

M. Chhetri, S. Oruganti, and R. Shivaji, Existence results for a class of p-Laplacian problems with sign-changing weight, Differential Integral Equations 18 (2005), no. 9, 991-996.

13.

F. Cstea, D. Motreanu, and V. Radulescu, Weak solutions of quasilinear problems with nonlinear boundary condition, Nonlinear Anal. 43 (2001), no. 5, Ser. A: TheoryMethods, 623-636.

14.

R. Dalmasso, Existence and uniqueness of positive solutions of semilinear elliptic systems, Nonlinear Anal. 39 (2000), no. 5, Ser. A: Theory Methods, 559-568.

15.

E. N. Dancer, Competing species systems with diffusion and large interaction, Rend. Sem. Mat. Fis. Milano 65 (1995), 23-33.

16.

P. Drabek and J. Hernandez, Existence and uniqueness of positive solutions for some quasilinear elliptic problem, Nonlinear Anal. 44 (2001), no. 2, Ser. A: Theory Methods, 189-204.

17.

J. F. Escobar, Uniqueness theorems on conformal deformations of metrics, Sobolev inequalities, and an eigenvalue estimate, Comm. Pure Appl. Math. 43 (1990), no. 7, 857-883.

18.

F. Fang and S. Liu, Nontrivial solutions of superlinear p-Laplacian equations, J. Math. Anal. Appl. 351 (2009), no. 1, 138-146.

19.

D. D. Hai and R. Shivaji, An existence result on positive solutions for a class of semi-linear elliptic systems, Proc. Roy. Soc. Edinburgh Sect. A 134 (2004), no. 1, 137-141.

20.

D. D. Hai and R. Shivaji, An existence result on positive solutions for a class of p-Laplacian systems, Nonlinear Anal. 56 (2004), 1007-1010.

21.

G. S. Ladde, V. Lakshmikantham, and A. S. Vatsale, Existence of coupled quasisolutions of systems of nonlinear elliptic boundary value problems, Nonlinear Anal. 8 (1984), no. 5, 501-515.

22.

O. H. Miyagaki and R. S. Rodrigues, On positive solutions for a class of singular quasi- linear elliptic systems, J. Math. Anal. Appl. 334 (2007), no. 2, 818-833.

23.

P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations 51 (1984), no. 1, 126-150.

24.

B. Xuan, The eigenvalue problem for a singular quasilinear elliptic equation, Electron. J. Differential Equations 2004 (2004), no. 16, 11 pp.