JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A NOTE ON WEYL'S THEOREM FOR *-PARANORMAL OPERATORS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A NOTE ON WEYL'S THEOREM FOR *-PARANORMAL OPERATORS
Kim, An-Hyun;
  PDF(new window)
 Abstract
In this note we investigate Weyl's theorem for *-paranormal operators on a separable infinite dimensional Hilbert space. We prove that if T is a *-paranormal operator satisfying Property is closed for each , where is a local spectral subspace of T, then Weyl's theorem holds for T.
 Keywords
Weyl's theorem;*-paranormal operators;Property (E);
 Language
English
 Cited by
 References
1.
P. Aiena, Fredholm and Local Spectral Theory, with Applications to Multipliers, Kluwer Academic Publ., London, 2004.

2.
P. Aiena and O. Monsalve, Operators which do not have the single valued extension property, J. Math. Anal. Appl. 250 (2000), no. 2, 435-448. crossref(new window)

3.
S. C. Arora and J. K. Thukral, On a class of operators, Glas. Mat. Ser. III 21(41) (1986), no. 2, 381-386.

4.
S. C. Arora and J. K. Thukral, $M^{\ast}$-paranormal operators, Glas. Mat. Ser. III 22(42) (1987), no. 1, 123-129.

5.
S. K. Berberian, An extension of Weyl's theorem to a class of not necessarily normal operators, Michigan Math. J. 16 (1969), 273-279. crossref(new window)

6.
S. K. Berberian, The Weyl spectrum of an operator, Indiana Univ. Math. J. 20 (1970), 529-544. crossref(new window)

7.
L. A. Coburn, Weyl's theorem for nonnormal operators, Michigan Math. J. 13 (1966), 285-288. crossref(new window)

8.
J. K. Finch, The single valued extension property on a Banach space, Pacific J. Math. 58 (1975), no. 1, 61-69. crossref(new window)

9.
Y. M. Han and A.-H. Kim, A note on ${\ast}$-paranormal operators, Integral Equations Operator Theory 49 (2004), no. 4, 435-444.

10.
R. E. Harte, Fredholm, Weyl and Browder theory, Proc. Roy. Irish Acad. Sect. A 85 (1985), no. 2, 151-176.

11.
R. E. Harte, Invertibility and Singularity for Bounded Linear Operators, Dekker, New York, 1988.

12.
R. E. Harte and W. Y. Lee, Another note on Weyl's theorem, Trans. Amer. Math. Soc. 349 (1997), no. 5, 2115-2124. crossref(new window)

13.
K. B. Laursen, Operators with finite ascent, Pacific J. Math. 152 (1992), no. 2, 323-336. crossref(new window)

14.
S. Prasanna, Weyl's theorem and thin spectra, Proc. Indian Acad. Sci. Math. Sci. 91 (1982), no. 1, 59-63. crossref(new window)

15.
T. T. West, The decomposition of Riesz operators, Proc. London Math. Soc. 16 (1966), 737-752. crossref(new window)

16.
H. Weyl, Uber beschrankte quadratische Formen, deren Differenz vollsteig ist, Rend. Circ. Mat. Palermo 27 (1909), 373-392. crossref(new window)