JOURNAL BROWSE
Search
Advanced SearchSearch Tips
THE INTEGRAL EXPRESSION INVOLVING THE FAMILY OF LAGUERRE POLYNOMIALS AND BESSEL FUNCTION
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
THE INTEGRAL EXPRESSION INVOLVING THE FAMILY OF LAGUERRE POLYNOMIALS AND BESSEL FUNCTION
Shukla, Ajay Kumar; Salehbhai, Ibrahim Abubaker;
  PDF(new window)
 Abstract
The principal aim of the paper is to investigate new integral expression , where is a positive real number; , and are complex numbers with positive real parts; , , , and are complex numbers whose real parts are greater than -1; is Bessel function and () is generalized Laguerre polynomials. Some integral formulas have been obtained. The Maple implementation has also been examined.
 Keywords
infinite integrals;Laguerre polynomials;Hankel transform;
 Language
English
 Cited by
 References
1.
P. Beckmann, Orthogonal Polynomials for Engineers and Physicists, The Golem Press, Boulder, Colorado, 1973.

2.
I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, Academic Press, New York, 1994.

3.
I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, New York, 2000.

4.
K. S. Kolbig and H. Scherb, On a Hankel transform integral containing an exponential function and two Laguerre polynomials, J. Comput. Appl. Math. 71 (1996), no. 2, 357- 363. crossref(new window)

5.
H. A. Mavromatis, An interesting new result involving associated Laguerre polynomials, Int. J. Comp. Math. 36 (1990), 257-261. crossref(new window)

6.
R. Piessens and M. Branders, Numerical inversion of the Laplace transform using generalised Laguerre polynomials, Proc. Inst. Elec. Engrs. 118 (1971), 1517-1522. crossref(new window)

7.
T. R. Prabhakar and R. Suman, Some results on the polynomials $L_n^{({\alpha},{\beta})}$ (x), Rocky Mountain J. Math. 8 (1978), no. 4, 751-754. crossref(new window)

8.
A. P. Prudnikov, Y. A. Bryehkov, and O. I. Mariehev, Integrals and Series, Vol. 2, Special Functions, Gordon and Breach, New York, 1986.

9.
E. D. Rainville, Special Functions, The Macmillan Company, New York, 1960.

10.
A. K. Shukla, J. C. Prajapati, and I. A. Salehbhai, On a set of polynomials suggested by the family of Konhauser polynomial, Int. J. Math. Anal. 3 (2009), no. 13-16, 637-643.

11.
J. Spanier and K. B. Oldham, An Atlas of Functions, Hemisphere, Washington DC, Springer, Berlin, 1987.

12.
H. M. Srivastava, A multilinear generating function for the Konhauser sets of biorthogonal polynomials suggested by the Laguerre polynomials, Pacific J. Math. 117 (1985), no. 1, 183-191. crossref(new window)