JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SOME REMARKS ON EXTREMAL PROBLEMS IN WEIGHTED BERGMAN SPACES OF ANALYTIC FUNCTIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SOME REMARKS ON EXTREMAL PROBLEMS IN WEIGHTED BERGMAN SPACES OF ANALYTIC FUNCTIONS
Shamoyan, Romi F.; Arsenovic, Milos;
  PDF(new window)
 Abstract
We prove some sharp extremal distance results for functions in weighted Bergman spaces on the upper halfplane. We also prove new analogous results in the context of bounded strictly pseudoconvex domains with smooth boundary.
 Keywords
Bergman spaces;pseudoconvex domains;extremal problems;
 Language
English
 Cited by
1.
ON DISTANCE ESTIMATES AND ATOMIC DECOMPOSITIONS IN SPACES OF ANALYTIC FUNCTIONS ON STRICTLY PSEUDOCONVEX DOMAINS, Bulletin of the Korean Mathematical Society, 2015, 52, 1, 85  crossref(new windwow)
 References
1.
F. Beatrous, Jr.$L^{p}$estimates for extensions of holomorphic functions, Michigan Math. J. 32 (1985), no. 3, 361-380. crossref(new window)

2.
D. Bekolle, C. Berger, L. Coburn, and K. Zhu, BMO in the Bergman metric on bounded symmetric domains, J. Funct. Anal. 93 (1990), no. 2, 310-350. crossref(new window)

3.
D. Bekolle and A. Bonami, Estimates for the Bergman and Szego projections in two symmetric domains, Colloq. Math. 68 (1995), no. 1, 81-100.

4.
D. Bekolle, A. Bonami, G. Garrigos, C. Nana, M. Peloso, and F. Ricci Lecture notes on Bergman projections on tube domains over cones: an analytic and geometric viewpoint, preprint 2002.

5.
M. Djrbashian and A. Djrbashian, Integral representations for some classes of analytic functions in the half-plane, Dokl Acad NAuk 285 (1985), 547-550.

6.
A. Djrbashian and K. Karapetyan, Integral inequalities between conjugate pluriharmonic functions in multidimensional domains, Izv NAts Akad Nauk Armenii (1988), 216-236.

7.
M. Djrbashian and F. Shamoian, Topics in the theory of $A_{p}^{\alpha}$ classes, Teubner Texte zur Mathematik, 1988, v 105.

8.
P. Duren, Theory of $H^{p}$ Spaces, Academic Press, 1970.

9.
J. Faraut and A. Koranyi, Function spaces and reproducing kernels on bounded symmetric domains, J. Funct. Anal. 88 (1990), no. 1, 64-89. crossref(new window)

10.
R. Shamoyan and O. Mihic, On new estimates for distances in analytic function spaces in higher dimension, Sib. Elektron. Mat. Izv. 6 (2009), 514-517.

11.
R. Shamoyan and O. Mihic, On new estimates for distances in analytic function spaces in the unit disk, polydisk and unit ball, to appear in Bol. Asoc. MAt. Venez.