JOURNAL BROWSE
Search
Advanced SearchSearch Tips
CONVERGENCE OF ISHIKAWA'METHOD FOR GENERALIZED HYBRID MAPPINGS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
CONVERGENCE OF ISHIKAWA'METHOD FOR GENERALIZED HYBRID MAPPINGS
Yan, Fangfang; Su, Yongfu; Feng, Qinsheng;
  PDF(new window)
 Abstract
In this paper, we first talk about a more wide class of nonlinear mappings, Then, we deal with weak convergence theorems for generalized hybrid mappings in a Hilbert space.
 Keywords
generalized hybrid mappings;Ishikawa's iteration;weak convergence;Hilbert space;
 Language
English
 Cited by
 References
1.
K. Aoyama, S. Iemoto, F. Kohsaka, andW. Takahashi, Fixed point and ergodic theorems for ${\lambda}$-hybrid mappings in Hilbert spaces, J. Nonlinear Convex Anal. 11 (2010), no. 2, 335-343.

2.
E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student 63 (1994), no. 1-4, 123-145.

3.
F. E. Browder, Convergence theorems for sequences of nonlinear operators in Banach spaces, Math. Z. 100 (1967), 201-225. crossref(new window)

4.
P. L. Combettes and A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal. 6 (2005), no. 1, 117-136.

5.
K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge University Press, Cambridge, 1990.

6.
B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc. 73 (1967), 957-961. crossref(new window)

7.
M. Hojo, W. Takahashi, and I. Termwuttipong, Strong convergence theorems for 2-generalized hybrid mappings in Hilbert spaces, Nonlinear Anal. 75 (2012), no. 4, 2166- 2176. crossref(new window)

8.
S. Iemoto and W. Takahashi, Approximating fixed points of nonexpansive mappings and nonspreading mappings in a Hilbert space, Nonlinear Anal. 71 (2009), no. 12, 2082-2089. crossref(new window)

9.
S. Ishikawa, Fixed points by a new iteration, Proc. Amer. Math. Soc. 44 (1974), 147-150. crossref(new window)

10.
S. Itoh and W. Takahashi, The common fixed point theory of single-valued mappings and multi-valued mappings, Pacific J. Math. 79 (1978), no. 2, 493-508. crossref(new window)

11.
F. Kohsaka and W. Takahashi, Fixed point theorems for a class of nonlinear mappings related to maximal monotone operators in Banach spaces, Arch. Math. 91 (2008), no. 2, 166-177. crossref(new window)

12.
F. Kohsaka and W. Takahashi, Existence and approximation of fixed points of firmly nonexpansive-type mappings in Banach spaces, SIAM J. Optim. 19 (2008), no. 2, 824-835. crossref(new window)

13.
P. Kocourek, W. Takahashi, and J.-C. Yao, Fixed point theorems and weak convergence theorems for generalized hybrid mappings in Hilbert spaces, Taiwanese J. Math. 14 (2010), no. 6, 2497-2511.

14.
W. R. Mann, Mean value methods in iteration method, Proc. Amer. Math. Soc. 4 (1953), 506-510. crossref(new window)

15.
Z. Opial, Weak convergence of the sequence of successive approximations for non-expansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597.

16.
W. Takahashi, Nonlinear Functional Analysis, Yokohoma Publishers, Yokohama, 2000.

17.
W. Takahashi, Introduction to Nonlinear and Convex Analysis, Yokohama Publishers, Yokohama, 2005.

18.
W. Takahashi and M. Toyoda, Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl. 118 (2003), no. 2, 417-482. crossref(new window)

19.
W. Takahashi and J.-C. Yao, Fixed point theorems and ergodic theorems for nonlinear mappings in Hilbert spaces, Taiwanese J. Math. 15 (2011), no. 2, 457-472.