JOURNAL BROWSE
Search
Advanced SearchSearch Tips
RESULTANTS OF CYCLOTOMIC POLYNOMIALS OVER AND APPLICATIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
RESULTANTS OF CYCLOTOMIC POLYNOMIALS OVER AND APPLICATIONS
Jeong, Sangtae;
  PDF(new window)
 Abstract
In this paper we compute the resultants of the Carlitz cyclotomic polynomials and then we address two applications to the setting of the Carlitz module.
 Keywords
cyclotomic polynomials;resultants;p-resultants;Carlitz modules;
 Language
English
 Cited by
 References
1.
T. M. Apostol, Resultants of cyclotomic polynomials, Proc. Amer. Math. Soc. 24 (1970), 457-462 crossref(new window)

2.
T. M. Apostol, Euler's ${\phi}$-function and separable Gauss sums, Proc. Amer. Math. Soc. 24 (1970), 482-485.

3.
S. Bae, The arithmetic of Carlitz polynomials, J. Korean Math. Soc. 35 (1998), no. 2, 341-360.

4.
S. Bae and S. Hahn, On the ring of integers of cyclotomic function fields, Bull. Korean Math. Soc. 29 (1992), no. 1, 153-163.

5.
L. Carlitz, A polynomial related to the cyclotomic polynomial, Rend. Sem. Mat. Univ. Padova 47 (1972), 57-63.

6.
F. E. Diederichsen, Uber die Ausreduktion ganzzahliger Gruppendarstellungen bei arithmetischer Aquivalenz, Abh. Math. Sem. Hansischen Univ. 13 (1940), 357-412.

7.
D. Goss, Basic Structures of Function Field Arithmetic, Springer-Verlag, Berlin, Heidelberg, New York, 1996.

8.
I. Kaplansky, Commutative Rings, Bostom 1970.

9.
S. Lang, Algebra, (3rd edition), Addison-Wesley, Reading, MA, 1993.

10.
E. Lehmer, A numerical function applied to cyclotomy, Bull. Amer. Math. Soc. 36 (1930), no. 4, 291-298. crossref(new window)

11.
S. Louboutin, Resultants of cyclotomic polynomials, Publ. Math. Debrecen 50 (1997), no. 1-2, 75-77.

12.
H. Luneburg, Resultanten von Kreisteilungspolynomen, Arch. Math. (Basel) 42 (1984), no. 2, 139-144. crossref(new window)

13.
O. Ore, On a special class of polynomials, Trans. Amer. Math. Soc. 35 (1933), no. 3, 559-584. crossref(new window)

14.
M. Rosen, Number Theory in Function Fields, Springer-Verlag, Berlin, 2002.

15.
G. D. Villa Salvador, Topics in the Theory of Algebraic Function Fields, Mathematics: Theory & Applications. Birkhauser Boston, Inc., Boston, MA, 2006.