JOURNAL BROWSE
Search
Advanced SearchSearch Tips
CYCLIC CODES OF LENGTH 2n OVER ℤ4
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
CYCLIC CODES OF LENGTH 2n OVER ℤ4
Woo, Sung Sik;
  PDF(new window)
 Abstract
The purpose of this paper is to find a description of the cyclic codes of length over . We show that any ideal of [X]/( - 1) is generated by at most two polynomials of the standard forms. We also find an explicit description of their duals in terms of the generators.
 Keywords
cyclic code over ;
 Language
English
 Cited by
 References
1.
M. F. Atiyah and I. G. Macdonald, Introduction to Commutative algebra, Addison-Wesley, 1969.

2.
S. T. Dougherty and Y. H. Park, On modular cyclic codes, Finite Fields Appl. 13 (2007), no. 1, 31-57. crossref(new window)

3.
P. Kanwar and S. R. Lopez-Permouth, Cyclic codes over the integers modulo pm, Finite Fields Appl. 3 (1997), no. 4, 334-352. crossref(new window)

4.
Bernard R. McDonald, Finite Rings with Identity, Marcel Dekker, 1974.

5.
S. S. Woo, Free cyclic codes over finite local rings, Bull. Korean Math. Soc. 43 (2006), no. 4, 723-735. crossref(new window)

6.
S. S. Woo, Ideals of ${\mathbb{Z}}_p^n[X]/(X^l-1)$, Commun. Korean Math. Soc. 26 (2011), no. 3, 427-443. crossref(new window)

7.
S. S. Woo, Cyclic codes of even length over ${\mathbb{Z}}_4$, J. Korean Math. Soc. 44 (2007), no. 3, 697-706. crossref(new window)