JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A COUNTEREXAMPLE FOR IMPROVED SOBOLEV INEQUALITIES OVER THE 2-ADIC GROUP
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A COUNTEREXAMPLE FOR IMPROVED SOBOLEV INEQUALITIES OVER THE 2-ADIC GROUP
Chamorro, Diego;
  PDF(new window)
 Abstract
On the framework of the 2-adic group , we study a Sobolev-like inequality where we estimate the norm by a geometric mean of the BV norm and the norm. We first show, using the special topological properties of the -adic groups, that the set of functions of bounded variations BV can be identified to the Besov space ˙. This identification lead us to the construction of a counterexample to the improved Sobolev inequality.
 Keywords
Sobolev inequalities;p-adic groups;
 Language
English
 Cited by
 References
1.
Y. Amice, Les nombres p-adiques, Presses Universitaires de France, Paris, 1975.

2.
J. Bergh and J. Lofstrom, Interpolation Spaces. An Introduction, Grundlehren der Mathematischen Wissenschaften, 223. Springer Verlag, 1976.

3.
D. Chamorro, Improved Sobolev Inequalities and Muckenhoupt weights on stratified Lie groups, J. Math. Anal. Appl. 377 (2011), no. 2, 695-709. crossref(new window)

4.
D. Chamorro, Some functional inequalities on polynomial volume growth Lie groups, Canad. J. Math. 64 (2012), no. 3, 481-496. crossref(new window)

5.
A. Cohen, W. Dahmen, I. Daubechies, and R. De Vore, Harmonic Analysis of the space BV, Rev. Mat. Iberoamericana 19 (2003), no. 1, 235-263.

6.
P. Gerard, Y. Meyer, and F. Oru, Inegalites de Sobolev Precisees, Equations aux Derivees Partielles, Seminaire de l'Ecole Polytechnique, expose $n^{\circ}$ IV (1996-1997).

7.
K. Ikeda, T. Kim, and T. K. Shiratani, On p-adic bounded functions, Mem. Fac. Sci. Kyushu Univ. Ser. A 46 (1992), no. 2, 341-349.

8.
L. C. Jang, T. Kim, J.-W. Son, and S.-H. Rim, On p-adic bounded functions. II, J. Math. Anal. Appl. 264 (2001), no. 1, 21-31. crossref(new window)

9.
T. Kim, q-Volkenborn integration. Russ. J. Math. Phys. 9 (2002), no. 3, 288-299.

10.
N. Koblitz, p-adic Numbers, p-adic Analysis and Zeta-functions, GTM 58. Springer Verlag, 1977.

11.
M. Ledoux, On improved Sobolev embedding theorems, Math. Res. Lett. 10 (2003), no. 5-6, 659-669. crossref(new window)

12.
E. M. Stein, Topics in Harmonic Analysis, Annals of mathematics Studies, 63. Princeton University Press, 1970.

13.
P. Strzelecki, Gagliardo-Nirenberg inequalities with a BMO term, Bull. Lond. Math. Soc. 38 (2006), no. 2, 294-300. crossref(new window)

14.
V. S. Vladimirov, I. V. Volovich, and E. I. Zelenov, p-Adic Analysis and Mathematical Physics, World Scientific, Singapore, 1994.