JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON A FAST ITERATIVE METHOD FOR APPROXIMATE INVERSE OF MATRICES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON A FAST ITERATIVE METHOD FOR APPROXIMATE INVERSE OF MATRICES
Soleymani, Fazlollah;
  PDF(new window)
 Abstract
This paper studies a computational iterative method to find accurate approximations for the inverse of real or complex matrices. The analysis of convergence reveals that the method reaches seventh-order convergence. Numerical results including the comparison with different existing methods in the literature will also be considered to manifest its superiority in different types of problems.
 Keywords
Hotelling-Bodewig algorithm;ill-conditioned;approximate inverse;initial matrix;
 Language
English
 Cited by
1.
Geometrical Inverse Preconditioning for Symmetric Positive Definite Matrices, Mathematics, 2016, 4, 3, 46  crossref(new windwow)
2.
Stable time step estimates for NURBS-based explicit dynamics, Computer Methods in Applied Mechanics and Engineering, 2015, 295, 581  crossref(new windwow)
3.
A Class of Kung–Traub-Type Iterative Algorithms for Matrix Inversion, International Journal of Applied and Computational Mathematics, 2016, 2, 4, 641  crossref(new windwow)
4.
Four-Point Optimal Sixteenth-Order Iterative Method for Solving Nonlinear Equations, Journal of Applied Mathematics, 2013, 2013, 1  crossref(new windwow)
5.
Solving Nondifferentiable Nonlinear Equations by New Steffensen-Type Iterative Methods with Memory, Mathematical Problems in Engineering, 2014, 2014, 1  crossref(new windwow)
6.
On the extension of Householder’s method for weighted Moore–Penrose inverse, Applied Mathematics and Computation, 2014, 231, 407  crossref(new windwow)
7.
Weighting Shepard-type operators, Computational and Applied Mathematics, 2015  crossref(new windwow)
8.
A Matrix Iteration for Finding Drazin Inverse with Ninth-Order Convergence, Abstract and Applied Analysis, 2014, 2014, 1  crossref(new windwow)
 References
1.
A. Ben-Israel and D. Cohen, On iterative computation of generalized inverses and associated projections, SIAM J. Numer. Anal. 3 (1966), 410-419. crossref(new window)

2.
A. Ben-Israel and T. N. E. Greville, Generalized Inverses, Springer, 2nd edition, 2003.

3.
W. Cao and B. Guo, Preconditioning for the p-version boundary element method in three dimension with tringaular elements, J. Korean Math. Soc. 41 (2004), no. 2, 345-368. crossref(new window)

4.
H. Chen and Y. Wang, A family of higher-order convergent iterative methods for computing the Moore-Penrose inverse, Appl. Math. Comput. 218 (2011), no. 8, 4012-4016. crossref(new window)

5.
en.wikipedia.org/wiki/Invertible_matrix.

6.
J. M. Garnett, A. Ben-Israel, and S. S. Yau, A hyperpower iterative method for computing matrix products involving the generalized inverse, SIAM J. Numer. Anal. 8 (1971), 104-109. crossref(new window)

7.
H. Hotelling, Analysis of a complerx statistocal variable into principal components, J. Educ. Psysh. 24 (1933), 498-520. crossref(new window)

8.
E. V. Krishnamurthy and S. K. Sen, Numerical Algorithms, Computations in science and engineering. Affiliated East-West Press Pvt. Ltd., New Delhi, 1986.

9.
H.-B. Li, T.-Z. Huang, Y. Zhang, X.-P. Liu, and T.-X. Gu, Chebyshev-type methods and preconditioning techniques, Appl. Math. Comput. 218 (2011), no. 2, 260-270. crossref(new window)

10.
W. Li and Z. Li, A family of iterative methods for computing the approximate inverse of a square matrix and inner inverse of a non-square matrix, Appl. Math. Comput. 215 (2010), no. 9, 3433-3442. crossref(new window)

11.
M. Monsalve and M. Raydan, A new inversion-free method for a rational matrix equation, Linear Algebra Appl. 433 (2010), no. 1, 64-71. crossref(new window)

12.
Y. Nakatsukasa, Z. Bai, and F. Gygi, Optimizing Halley's iteration for computing the matrix polar decomposition, SIAM. J. Matrix Anal. Appl. 31 (2010), no. 5, 2700-2720. crossref(new window)

13.
V. Pan and R. Schreiber, An improved Newton iteration for the generalized inverse of a matrix, with applications, SIAM J. Sci. Statist. Comput. 12 (1991), no. 5, 1109-1130. crossref(new window)

14.
I. Pavaloiu and E. Catina, Remarks on some Newton and Chebyshev-type methods for approximation eigenvalues and eigenvectors of matrices, Comput. Sci. J. Moldova 7 (1999), no. 1, 3-17.

15.
S. M. Rump, Inversion of extremely ill-conditioned matrices in floating-point, Japan J. Indust. Appl. Math. 26 (2009), no. 2-3, 249-277. crossref(new window)

16.
G. Schulz, Iterative Berechnung der Reziproken matrix, Z. Angew. Math. Mech. 13 (1933), 57-59. crossref(new window)

17.
S. Wolfram, The Mathematica Book, 5th edition, Wolfram Media, 2003.

18.
J. H. Yun, Comparison results for the preconditioned Gauss-Seidel methods, Commun. Korean Math. Soc. 27 (2012), no. 1, 207-215. crossref(new window)