JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON A FAST ITERATIVE METHOD FOR APPROXIMATE INVERSE OF MATRICES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON A FAST ITERATIVE METHOD FOR APPROXIMATE INVERSE OF MATRICES
Soleymani, Fazlollah;
  PDF(new window)
 Abstract
This paper studies a computational iterative method to find accurate approximations for the inverse of real or complex matrices. The analysis of convergence reveals that the method reaches seventh-order convergence. Numerical results including the comparison with different existing methods in the literature will also be considered to manifest its superiority in different types of problems.
 Keywords
Hotelling-Bodewig algorithm;ill-conditioned;approximate inverse;initial matrix;
 Language
English
 Cited by
1.
Geometrical Inverse Preconditioning for Symmetric Positive Definite Matrices, Mathematics, 2016, 4, 3, 46  crossref(new windwow)
2.
Comparison of linear solvers for equilibrium geochemistry computations, Computational Geosciences, 2016  crossref(new windwow)
3.
Stable time step estimates for NURBS-based explicit dynamics, Computer Methods in Applied Mechanics and Engineering, 2015, 295, 581  crossref(new windwow)
4.
A Class of Kung–Traub-Type Iterative Algorithms for Matrix Inversion, International Journal of Applied and Computational Mathematics, 2016, 2, 4, 641  crossref(new windwow)
5.
Four-Point Optimal Sixteenth-Order Iterative Method for Solving Nonlinear Equations, Journal of Applied Mathematics, 2013, 2013, 1  crossref(new windwow)
6.
Solving Nondifferentiable Nonlinear Equations by New Steffensen-Type Iterative Methods with Memory, Mathematical Problems in Engineering, 2014, 2014, 1  crossref(new windwow)
7.
On the extension of Householder’s method for weighted Moore–Penrose inverse, Applied Mathematics and Computation, 2014, 231, 407  crossref(new windwow)
8.
Weighting Shepard-type operators, Computational and Applied Mathematics, 2015  crossref(new windwow)
9.
A Matrix Iteration for Finding Drazin Inverse with Ninth-Order Convergence, Abstract and Applied Analysis, 2014, 2014, 1  crossref(new windwow)
 References
1.
A. Ben-Israel and D. Cohen, On iterative computation of generalized inverses and associated projections, SIAM J. Numer. Anal. 3 (1966), 410-419. crossref(new window)

2.
A. Ben-Israel and T. N. E. Greville, Generalized Inverses, Springer, 2nd edition, 2003.

3.
W. Cao and B. Guo, Preconditioning for the p-version boundary element method in three dimension with tringaular elements, J. Korean Math. Soc. 41 (2004), no. 2, 345-368. crossref(new window)

4.
H. Chen and Y. Wang, A family of higher-order convergent iterative methods for computing the Moore-Penrose inverse, Appl. Math. Comput. 218 (2011), no. 8, 4012-4016. crossref(new window)

5.
en.wikipedia.org/wiki/Invertible_matrix.

6.
J. M. Garnett, A. Ben-Israel, and S. S. Yau, A hyperpower iterative method for computing matrix products involving the generalized inverse, SIAM J. Numer. Anal. 8 (1971), 104-109. crossref(new window)

7.
H. Hotelling, Analysis of a complerx statistocal variable into principal components, J. Educ. Psysh. 24 (1933), 498-520. crossref(new window)

8.
E. V. Krishnamurthy and S. K. Sen, Numerical Algorithms, Computations in science and engineering. Affiliated East-West Press Pvt. Ltd., New Delhi, 1986.

9.
H.-B. Li, T.-Z. Huang, Y. Zhang, X.-P. Liu, and T.-X. Gu, Chebyshev-type methods and preconditioning techniques, Appl. Math. Comput. 218 (2011), no. 2, 260-270. crossref(new window)

10.
W. Li and Z. Li, A family of iterative methods for computing the approximate inverse of a square matrix and inner inverse of a non-square matrix, Appl. Math. Comput. 215 (2010), no. 9, 3433-3442. crossref(new window)

11.
M. Monsalve and M. Raydan, A new inversion-free method for a rational matrix equation, Linear Algebra Appl. 433 (2010), no. 1, 64-71. crossref(new window)

12.
Y. Nakatsukasa, Z. Bai, and F. Gygi, Optimizing Halley's iteration for computing the matrix polar decomposition, SIAM. J. Matrix Anal. Appl. 31 (2010), no. 5, 2700-2720. crossref(new window)

13.
V. Pan and R. Schreiber, An improved Newton iteration for the generalized inverse of a matrix, with applications, SIAM J. Sci. Statist. Comput. 12 (1991), no. 5, 1109-1130. crossref(new window)

14.
I. Pavaloiu and E. Catina, Remarks on some Newton and Chebyshev-type methods for approximation eigenvalues and eigenvectors of matrices, Comput. Sci. J. Moldova 7 (1999), no. 1, 3-17.

15.
S. M. Rump, Inversion of extremely ill-conditioned matrices in floating-point, Japan J. Indust. Appl. Math. 26 (2009), no. 2-3, 249-277. crossref(new window)

16.
G. Schulz, Iterative Berechnung der Reziproken matrix, Z. Angew. Math. Mech. 13 (1933), 57-59. crossref(new window)

17.
S. Wolfram, The Mathematica Book, 5th edition, Wolfram Media, 2003.

18.
J. H. Yun, Comparison results for the preconditioned Gauss-Seidel methods, Commun. Korean Math. Soc. 27 (2012), no. 1, 207-215. crossref(new window)