JOURNAL BROWSE
Search
Advanced SearchSearch Tips
INVOLUTIONS ON SURFACES OF GENERAL TYPE WITH pg = 0 I. THE COMPOSED CASE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
INVOLUTIONS ON SURFACES OF GENERAL TYPE WITH pg = 0 I. THE COMPOSED CASE
Shin, YongJoo;
  PDF(new window)
 Abstract
Let S be a minimal surface of general type with having an involution over the field of complex numbers. It is well known that if the bicanonical map of S is composed with , then the minimal resolution W of the quotient is rational or birational to an Enriques surface. In this paper we prove that the surface W of S with having an involution with which the bicanonical map of S is composed is rational. This result applies in part to surfaces S with for which has degree 4 and is composed with an involution . Also we list the examples available in the literature for the given and the degree of .
 Keywords
involution;surface;of general type;
 Language
English
 Cited by
 References
1.
I. Bauer, F. Catanese, and R. Pignatelli, Surfaces of general type with geometric genus zero: a survey, math.AG/arXiv:1004.2583.

2.
E. Bombieri, Canonical models of surfaces of general type, Inst. Hautes Etudes Sci. Publ. Math. No. 42 (1973), 171-219.

3.
P. Burniat, Sur les surfaces de genre $P_{12}$ > 0, Ann. Mat. Pura Appl. (4) 71 (1966), 1-24. crossref(new window)

4.
A. Calabri, C. Ciliberto, and M. Mendes Lopes, Numerical Godeaux surfaces with an involution, Trans. Amer. Math. Soc. 359 (2007), no. 4, 1605-1632.

5.
A. Calabri, M. Mendes Lopes, and R. Pardini, Involutions on numerical Campedelli surfaces, Tohoku Math. J. (2) 60 (2008), no. 1, 1-22.

6.
L. Campedelli, Sopra alcuni piani doppi notevoli con curve di diramazione del decimo ordine, Atti Accad. Naz. Lincei 15 (1932), 536-542.

7.
I. Dolgachev, M. Mendes Lopes, and R. Pardini, Rational surfaces with many nodes, Compositio Math. 132 (2002), no. 3, 349-363. crossref(new window)

8.
M. Inoue, Some new surfaces of general type, Tokyo J. Math. 17 (1994), no. 2, 295-319. crossref(new window)

9.
J. Keum, Some new surfaces of general type with $P_g$ = 0, preprint, 1988.

10.
J. Keum, Quotients of fake projective planes, Geom. Topol. 12 (2008), no. 4, 2497-2515. crossref(new window)

11.
J. Keum and Y. Lee, Fixed locus of an involution acting on a Godeaux surface, Math. Proc. Cambridge Philos. Soc. 129 (2000), no. 2, 205-216. crossref(new window)

12.
V. S. Kulikov, Old examples and a new example of surfaces of general type with $P_g$ = 0, (Russian) Izv. Ross. Akad. Nauk Ser. Mat. 68 (2004), no. 5, 123-170; translation in Izv. Math. 68 (2004), no. 5, 965-1008.

13.
Y. Lee and Y. Shin, Involutions on a surface of general type with $P_g$ = q = 0, $K^2$ = 7, Osaka J. Math. (to appear).

14.
M. Mendes Lopes and R. Pardini, The bicanonical map of surfaces with $P_g$ = 0 and $K^2{\geq}7$, Bull. London Math. Soc. 33 (2001), no. 3, 265-274. crossref(new window)

15.
M. Mendes Lopes and R. Pardini, A connected component of the moduli space of surfaces with $P_g$ = 0, Topology 40 (2001), no. 5, 977-991. crossref(new window)

16.
M. Mendes Lopes and R. Pardini, Enriques surfaces with eight nodes, Math. Z. 241 (2002), no. 4, 673-683. crossref(new window)

17.
M. Mendes Lopes and R. Pardini, A new family of surfaces with $P_g$ = 0 and $K^2$ = 3, Ann. Sci. Ecole Norm. Sup. (4) 37 (2004), no. 4, 507-531.

18.
M. Mendes Lopes and R. Pardini, Surfaces of general type with $P_g$ = 0, $K^2$ = 6 and non birational bicanonical map, Math. Ann. 329 (2004), no. 3, 535-552.

19.
M. Mendes Lopes and R. Pardini, The degree of the bicanonical map of a surface with $P_g$ = 0, Proc. Amer. Math. Soc. 135 (2007), no. 5, 1279-1282. crossref(new window)

20.
M. Mendes Lopes and R. Pardini, Numerical Campedelli surfaces with fundamental group of order 9, J. Eur. Math. Soc. (JEMS) 10 (2008), no. 2, 457-476.

21.
D. Naie, Surfaces d'Enriques et une construction de surfaces de type general avec $P_g$ = 0, Math. Z. 215 (1994), no. 2, 269-280. crossref(new window)

22.
R. Pardini, The classification of double planes of general type with $K^2$ = 8 and $P_g$ = 0, J. Algebra 259 (2003), no. 1, 95-118. crossref(new window)

23.
C. A. M. Peters, On certain examples of surfaces with $P_g$ = 0 due to Burniat, Nagoya Math. J. 66 (1977), 109-119.

24.
I. Reider, Vector bundles of rank 2 and linear systems on algebraic surfaces, Ann. of Math. (2) 127 (1988), no. 2, 309-316. crossref(new window)

25.
C. Rito, Involutions on surfaces with $P_g$ = q = 1, Collect. Math. 61 (2010), no. 1, 81-106. crossref(new window)

26.
C. Rito, Involutions on surfaces with $P_g$ = q = 0 and $K^2$ = 3, Geom. Dedicata 157 (2012), 319-330. crossref(new window)