JOURNAL BROWSE
Search
Advanced SearchSearch Tips
THE NUMBER OF POINTS ON ELLIPTIC CURVES y2
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
THE NUMBER OF POINTS ON ELLIPTIC CURVES y2
Jeon, Wonju; Kim, Daeyeoul;
  PDF(new window)
 Abstract
In this paper, we calculate the number of points on elliptic curves $y^2
 Keywords
congruence;elliptic curve;
 Language
English
 Cited by
 References
1.
I. F. Blake, G. Seroussi, and N. P. Smart, Elliptic Curves in Cryptography, Reprint of the 1999 original. London Mathematical Society Lecture Note Series, 265. Cambridge University Press, Cambridge, 2000.

2.
B. M. Brewer, On certain character sums, Trans. Amer. Math. Soc. 99 (1961), 241-245. crossref(new window)

3.
M. Demirci, G. Soydan, and I. N. Cangul, Rational points on elliptic curves E : $y^2=x^3+a^3$ in $\mathbb{F}_p$ where $p{\equiv}1$ (mod 6) is prime, Rocky Mountain J. Math. 37 (2007), no. 5, 1483-1491. crossref(new window)

4.
I. Inam, O. Bizim, and I. N. Cangul, Rational points on Frey elliptic curves E : $y^2=x^3-n^2x$, Adv. Stud. Contemp. Math. (Kyungshang) 14 (2007), no. 1, 69-76.

5.
I. Inam, G. Soydan, M. Demirci, O. Bizim, and I. N. Cangul, Corrigendum on "The number of points on elliptic curves E : $y^2=x^3$ +cx over $\mathbb{F}_p$ mod 8", Commun. Korean Math. Soc. 22 (2007), no. 2, 207-208. crossref(new window)

6.
K. Ireland and M. Rosen A Classical Introduction to Mordern Number Theory, Springer-Verlag, 1981.

7.
A. W. Knapp, Elliptic Curves, Princeton Uinversity Press, New Jersey 1992.

8.
H. Park, D. Kim, and E. Lee The number of points on elliptic curves E : $y^2=x^3$ + cx over $\mathbb{F}_p$ mod 8, Commun. Korean Math. Soc. 18 (2003), no. 1, 31-37. crossref(new window)

9.
H. Park, S. You, H. Park, D. Kim, and H. Kim The number of points on elliptic curves $E_A^0$ : $y^2=x^3$ + Ax over $\mathbb{F}_p$ mod 24, Honam Math. J. 34 (2012), no.1, 93-101. crossref(new window)

10.
A. R. Rajwade, A note on the number of solutions $N_p$ of the congruence $y^2{\equiv}x^3$-Dx (mod p), Proc. Cambfidge Philos. Soc. 67 (1970), 603-605. crossref(new window)

11.
R. Schoof, Counting points on elliptic curves over finite fields, J. Theor. Nombres Bordeaux 7 (1995), no. 1, 219-254. crossref(new window)

12.
J. H. Silverman, The Arithmetic of Elliptic Curves, Springer-Verlag, New York, 1986.

13.
Z. H. Sun, Supplements to the theory of quartic residues, Acta Arith. 97 (2001), no. 4, 361-377. crossref(new window)

14.
B. A. Venkov, Elementary Number Theory, translated form the Russian and edited by H. Alderson, Wolters-Noordhoff, Groningen, 1970.

15.
A. Weil, Sur les courbes algebriques et les varietes qui s'en deduisent, Hermann, Paris, 1948.

16.
S. You, H. Park, and H. Kim The Number of points on elliptic curves $E_0^a\;^3$ : $y^2=x^3+a^3b$ over $\mathbb{F}_p$ mod 24, Honam Math. J. 31 (2009), no. 3, 437-449. crossref(new window)