JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON NIL GENERALIZED POWER SERIESWISE ARMENDARIZ RINGS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON NIL GENERALIZED POWER SERIESWISE ARMENDARIZ RINGS
Ouyang, Lunqun; Liu, Jinwang;
  PDF(new window)
 Abstract
We in this note introduce a concept, so called nil generalized power serieswise Armendariz ring, that is a generalization of both S-Armendariz rings and nil power serieswise Armendariz rings. We first observe the basic properties of nil generalized power serieswise Armendariz rings, constructing typical examples. We next study the relationship between the nilpotent property of R and that of the generalized power series ring [[]] whenever R is nil generalized power serieswise Armendariz.
 Keywords
nil generalized power serieswise Armendariz;generalized power series ring;nilpotent property;
 Language
English
 Cited by
 References
1.
D. D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra 26 (1998), no. 7, 2265-2272. crossref(new window)

2.
R. Antoine, Nilpotent elements and Armendariz rings, J. Algebra 319 (2008), no. 8, 3128-3140. crossref(new window)

3.
E. P. Armendariz, A note on extensions of Baer and p.p.-rings, J. Austral. Math. Soc. 18 (1974), 470-473. crossref(new window)

4.
J. A. Beachy and W. D. Blair, Rings whose faithful left ideals are cofaithful, Pacific J. Math. 58 (1975), no. 1, 1-13. crossref(new window)

5.
H. Cartan and E. Eilenberg, Homological Algebra, Princeton Landmarks inMathematics, originally published in 1956, Princeton: Princeton University Press, 1956.

6.
C. Faith, Rings with zero intersection property on annihilators: zip rings, Publ. Mat. 33 (1989), no. 2, 329-332. crossref(new window)

7.
S. Hizem, A note on nil power serieswise Armendariz rings, Rendiconti del Circolo Mathematico di Palermo 59 (2010), no. 1, 87-99. crossref(new window)

8.
N. K. Kim, K. H. Lee, and Y. Lee, Power series rings satisfying a zero divisor property, Comm. Algebra 34 (2006), no. 6, 2205-2218. crossref(new window)

9.
T. Y. Lam, A First Course in Noncommutative Rings, Graduate Texts in Mathematics, Springer-Verlag, Berlin, 1991.

10.
Z. K. Liu, Special properties of rings of generalized power series, Comm. Algebra 32 (2004), no. 8, 3215-3226. crossref(new window)

11.
Z. K. Liu, On weak Armendariz rings, Comm. Algebra 34 (2006), no. 7, 2607-2616. crossref(new window)

12.
L. Ouyang, Ore extensions of weak zip rings, Glasg. Math. J. 51 (2009), no. 3, 525-537. crossref(new window)

13.
M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no. 1, 14-17.

14.
P. Ribenboim, Rings of generalized power series: Nilpotent elements, Abh. Math. Sem. Univ. Hamburg 61 (1991), 15-33. crossref(new window)

15.
P. Ribenboim, Noetherian rings of generalized power series, J. Pure Appl. Algebra 79 (1992), no. 3, 293-312. crossref(new window)

16.
P. Ribenboim, Semisimple rings and von Neumann regular rings of generalized power series, J. Algebra 198 (1997), no. 2, 327-338. crossref(new window)