JOURNAL BROWSE
Search
Advanced SearchSearch Tips
LAPLACIAN ON A QUANTUM HEISENBERG MANIFOLD
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
LAPLACIAN ON A QUANTUM HEISENBERG MANIFOLD
Lee, Hyun Ho;
  PDF(new window)
 Abstract
In this paper we give a definition of the Hodge type Laplacian on a non-commutative manifold which is the smooth dense subalgebra of a -algebra. We prove that the Laplacian on a quantum Heisenberg manifold is an elliptic operator in the sense that is compact.
 Keywords
quantum Heisenberg manifolds;Laplacian;elliptic operator;
 Language
English
 Cited by
1.
A note on nonlinear σ-models in noncommutative geometry, Infinite Dimensional Analysis, Quantum Probability and Related Topics, 2016, 19, 01, 1650006  crossref(new windwow)
 References
1.
P. S. Chakraborty and K. B. Sinha, Geometry on the quantum Heisenberg manifold, J. Funct. Anal. 203 (2003), no. 2, 425-452. crossref(new window)

2.
C. Chevalley and S. Eilenberg, Cohomology theory of Lie-groups and Lie-algebras, Trans. Amer. Math. Soc. 63 (1948), 85-124. crossref(new window)

3.
A. Connes, Noncommutative Geometry, Academic Press, San Diego, 1994.

4.
A. Connes, C*-algebres et geometrie differentielle, C. R. Acad. Sci. Paris Ser. A-B 290 (1980), no. 13, A599-A604.

5.
A. Connes and M. Rieffel, Yang-Mills for noncommutative two-tori, Operator algebras and mathematical physics (Iowa City, Iowa, 1985), 237-266, Contemp. Math., 62, Amer. Math. Soc., Providence, RI, 1987.

6.
M. A. Rieffel, Projective modules over hinger-dimensinal non-commutative tori, Can. J. Math. 40 (1988), 257-338. crossref(new window)

7.
M. A. Rieffel, Deformation quantization of Heisenberg manifolds, Comm. Math. Phys. 122 (1989), 531-562. crossref(new window)

8.
M. A. Rieffel, C*-algebras associated with irrational rotations, Pacific J. Math. 93 (1981), 415-429. crossref(new window)

9.
F. W. Warner, Foundations of Diffenrentiable Manifolds and Lie-Groups, Springer-Verlag, New York, 1983

10.
N. Weaver, Sub-Riemannian metrics for quantum Heisenberg manifolds, J. Operator Theory 43 (2000), no. 2,223-242