JOURNAL BROWSE
Search
Advanced SearchSearch Tips
COMMON FIXED POINT THEOREM IN FUZZY METRIC SPACE USING CONTROL FUNCTION
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
COMMON FIXED POINT THEOREM IN FUZZY METRIC SPACE USING CONTROL FUNCTION
Kumar, Amit; Vats, Ramesh Kumar;
  PDF(new window)
 Abstract
We give a fixed point theorem for complete fuzzy metric space which generalizes fuzzy Banach contraction theorems established by V. Gregori and A. Spena [Fuzzy Sets and Systems 125 (2002), 245-252] using notion of altering distance, initiated by Khan et al. [Bull. Austral. Math. Soc. 30 (1984), 1-9] in metric spaces.
 Keywords
common fixed point;fuzzy contractive mapping;complete fuzzy metric space;
 Language
English
 Cited by
1.
FIXED POINT THEOREMS FOR WEAK CONTRACTION IN INTUITIONISTIC FUZZY METRIC SPACE, Honam Mathematical Journal, 2016, 38, 2, 337  crossref(new windwow)
 References
1.
C. T. Aage and B. S. Choudhury, Some fixed point results in fuzzy metric spaces using a control function, to appear.

2.
C. T. Aage and J. N. Salunke, On fixed point theorems in fuzzy metric spaces using a control function, Int. J. Nonlinear Anal. Appl. 2 (2011), no. 1, 50-57.

3.
B. S. Choudhury and K. Das, A new contraction principle in Menger spaces, Acta Math. Sin. (Engl. Ser.) 24 (2008), no. 8, 1379-1386. crossref(new window)

4.
B. S. Choudhury, P. N. Dutta, and K. Das, A fixed points result in Menger space using a real function, Acta Math. Hungar. 122 (2009), no. 3, 203-216. crossref(new window)

5.
P. N. Dutta and B. S. Choudhury, A generalisation of contraction principle in met-ric spaces, Fixed Point Theory and Applications 2008 (2008), Article ID 406368, doi: 10.1155/2008/406368. crossref(new window)

6.
P. N. Dutta, B. S. Choudhury, and Krishnapada Das, Some fixed point results in Menger spaces using a control function, Surv. Math. Appl. 4 (2009), 41-52.

7.
A. George and P. Veeramani, On some results of analysis for fuzzy metric spaces, Fuzzy Sets and Systems 90 (1997), no. 3, 365-368. crossref(new window)

8.
A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems 64 (1994), no. 3, 395-399. crossref(new window)

9.
V. Gregori and S. Romaguerab, Some properties of fuzzy metric spaces, Fuzzy Sets and Systems 115 (2000), no. 3, 485-489. crossref(new window)

10.
V. Gregori and A. Sapena, On fixed point theorems in fuzzy metric spaces, Fuzzy Sets and Systems 125 (2002), no. 2, 245-252. crossref(new window)

11.
M. S. Khan, M. Swaleh, and S. Sessa, Fixed point theorems by altering distances between the points, Bull. Austral. Math. Soc. 30 (1984), no. 1, 1-9. crossref(new window)

12.
I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetika (Prague) 11 (1975), no. 5, 326-334.

13.
D. Mihet, Multivalued generalizations of probabilistic contractions, J. Math. Anal. Appl. 304 (2005), no. 2, 464-472. crossref(new window)

14.
D. Mihet, On fuzzy contractive mapping in fuzzy metric, Fuzzy Sets and Systems 158 (2007), no. 8, 915-921. crossref(new window)

15.
B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math. 10 (1960), 314-334.

16.
R. Vasuki and P. Veeramani, Fixed point theorems and Cauchy sequences in fuzzy metric spaces, Fuzzy Sets and Systems 135 (2003), no. 3, 415-417. crossref(new window)