JOURNAL BROWSE
Search
Advanced SearchSearch Tips
GENERIC DIFFEOMORPHISMS WITH ROBUSTLY TRANSITIVE SETS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
GENERIC DIFFEOMORPHISMS WITH ROBUSTLY TRANSITIVE SETS
Lee, Manseob; Lee, Seunghee;
  PDF(new window)
 Abstract
Let be a robustly transitive set of a diffeomorphism on a closed manifold. In this paper, we characterize hyperbolicity of in -generic sense.
 Keywords
transitive set;robustly transitive set;generic;dominated splitting;partially hyperbolic;hyperbolic;
 Language
English
 Cited by
1.
Orbital Shadowing for -Generic Volume-Preserving Diffeomorphisms, Abstract and Applied Analysis, 2013, 2013, 1  crossref(new windwow)
2.
The ergodic shadowing property from the robust and generic view point, Advances in Difference Equations, 2014, 2014, 1, 170  crossref(new windwow)
3.
The barycenter property for robust and generic diffeomorphisms, Acta Mathematica Sinica, English Series, 2016, 32, 8, 975  crossref(new windwow)
 References
1.
A. Arbieto, Periodic orbits and expansiveness, Math. Z. 269 (2011), no. 3-4, 801-807. crossref(new window)

2.
C. Bonatti and L. J. Diaz, Persistent nonhyperbolic transitive diffeomorphisms, Ann. of Math. (2) 143 (1996), no. 2, 357-396. crossref(new window)

3.
C. Bonatti, L. J. Diaz, and E. R. Pujals, A $C^1$-generic dichotomy for diffeomorphisms: weak forms of hyperbolicity or infinitlely many sinks or sources, Ann. of Math. 158 (2003), no. 2, 355-418. crossref(new window)

4.
M. Carvalho, Sinai-Ruelle-Bowen measures for N-dimensional derived freom Anosov diffeomorphisms, Ergodic Theory Dynam. Systems 13 (1993), no. 1, 21-44.

5.
L. J. Diaz, Robust nonhyperbolic dynamics and heterodimensional cycles, Ergodic Theory Dynam. Systems 15 (1995), no. 2, 291-315.

6.
L. J. Diaz, E. R. Pujals, and R. Ures, Partial hyperbolicity and robust transitivity, Acta Math. 183 (1999), no. 1, 1-43. crossref(new window)

7.
S. Hayashi, Diffeomorphisms in $F^1$(M) satisfy Axiom A, Ergodic Theory Dynam. Systems 12 (1992), no. 2, 233-253.

8.
R. Mane, Contributions to the stability conjecture, Topology 17 (1978), no. 4, 383-396. crossref(new window)

9.
R. Mane, An ergodic closing lemma, Ann. of Math. (2) 116 (1982), no. 3, 503-540. crossref(new window)

10.
K. Sakai, N. Sumi, and K. Yamamoto, Diffeomorphisms satisfying the specification property, Proc. Amer. Math. Soc. 138 (2010), no. 1, 315-321. crossref(new window)

11.
M. Shub, Topologically transitive diffeomorphism of $\mathbb{T}^4$, in Symposium on Differential equations and Dyanmical Systems (University of Warwick, 1968/69), pp. 39-40, Lecture Notes in Math., 206. Springer-Verlag, Berlin-New York, 1971.

12.
R. F. Williams, The "DA" maps of Smale and structural stability, in Global Analysis( Berkeley, CA, 1968), pp 329-334, Proc. Sympos. Pure Math., 124. Amer. Math. Soc., Providence, RI, 1970.

13.
D. Yang and S. Gan, Expansive homoclinic classes, Nonlinearity 22 (2009), no. 4, 729-733. crossref(new window)