JOURNAL BROWSE
Search
Advanced SearchSearch Tips
REAL QUADRATIC FUNCTION FIELDS OF MINIMAL TYPE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
REAL QUADRATIC FUNCTION FIELDS OF MINIMAL TYPE
Byeon, Dongho; Keem, Jiae; Lee, Sangyoon;
  PDF(new window)
 Abstract
In this paper, we will introduce the notion of the real quadratic function fields of minimal type, which is a function field analogue to Kawamoto and Tomita's notion of real quadratic fields of minimal type. As number field cases, we will show that there are exactly 6 real quadratic function fields of class number one that are not of minimal type.
 Keywords
function field;class number;
 Language
English
 Cited by
 References
1.
D. Byeon and S. Lee, A note on units of real quadratic fields, Bull. Korean Math. Soc. 49 (2012), no. 4, 767-774. crossref(new window)

2.
K. Feng and W. Hu, On real quadratic function fields of Chowla type with ideal class number one, Proc. Amer. Math. Soc. 127 (1999), no. 5, 1301-1307. crossref(new window)

3.
K. Feng and S. Sun, On class number of quadratic fields, Proceeding of First International Symposium on Algebraic Structures and Number Theory (1988, Hong Kong), Edited by S. P. Lam and K. P. Shum, World Scientific, (1990), 88-133.

4.
R. Hashimoto, Ankeny-Artin-Chowla conjecture and continued fraction, J. Number Theory 90 (2001), no. 1, 143-153. crossref(new window)

5.
F. Kawamoto and K. Tomita, Continued fractions and certain real quadratic fields of minimal type, J. Math. Soc. Japan 60 (2008), no. 3, 865-903. crossref(new window)

6.
M. Madan and C. Queen, Algebraic function fields of class number one, Acta Arith. 20 (1972), 423-432.

7.
J. Mc Laughlin, Multi-variable polynomial solutions to Pell's equation and fundamental units in real quadratic fields Pacific J. Math. 210 (2003), no. 2, 335-349. crossref(new window)

8.
A. Stein, Introduction to continued fraction expansion in real quadratic function fields, Preprint.