JOURNAL BROWSE
Search
Advanced SearchSearch Tips
LONG-TIME BEHAVIOR FOR SEMILINEAR DEGENERATE PARABOLIC EQUATIONS ON ℝN
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
LONG-TIME BEHAVIOR FOR SEMILINEAR DEGENERATE PARABOLIC EQUATIONS ON ℝN
Cung, The Anh; Le, Thi Thuy;
  PDF(new window)
 Abstract
We study the existence and long-time behavior of solutions to the following semilinear degenerate parabolic equation on : , under a new condition concerning a variable non-negative diffusivity . Some essential difficulty caused by the lack of compactness of Sobolev embeddings is overcome here by exploiting the tail-estimates method.
 Keywords
semilinear degenerate parabolic equation;weak solution;global attractor;non-compact case;tail estimates method;
 Language
English
 Cited by
 References
1.
C. T. Anh, N. D. Binh, and L. T. Thuy, On the global attractors for a class of semilinear degenerate parabolic equations, Ann. Polon. Math. 98 (2010), no. 1, 71-89. crossref(new window)

2.
C. T. Anh, N. D. Binh, and L. T. Thuy, Attractors for quasilinear parabolic equations involving weighted p-Laplacian operators, Vietnam J. Math. 38 (2010), no. 3, 261-280.

3.
C. T. Anh, N. M. Chuong, and T. D. Ke, Global attractor for the m-semiflow generated by a quasilinear degenerate parabolic equation, J. Math. Anal. Appl. 363 (2010), no. 2, 444-453. crossref(new window)

4.
C. T. Anh and P. Q. Hung, Global existence and long-time behavior of solutions to a class of degenerate parabolic equations, Ann. Polon. Math. 93 (2008), no. 3, 217-230. crossref(new window)

5.
C. T. Anh and T. D. Ke, Long-time behavior for quasilinear parabolic equations involving weighted p-Laplacian operators, Nonlinear Anal. 71 (2009), no. 10, 4415-4422. crossref(new window)

6.
C. T. Anh and T. D. Ke, On quasilinear parabolic equations involving weighted p-Laplacian operators, Nonlinear Differential Equations Appl. 17 (2010), no. 2, 195-212. crossref(new window)

7.
P. Caldiroli and R. Musina, On a variational degenerate elliptic problem, Nonlinear Differential Equations Appl. 7 (2000), no. 2, 187-199. crossref(new window)

8.
V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, Amer. Math. Soc. Colloq. Publ., Vol. 49, Amer. Math. Soc., Providence, RI, 2002.

9.
R. Dautray and J. L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Vol. I: Physical origins and classical methods, Springer-Verlag, Berlin, 1985.

10.
N. I. Karachalios and N. B. Zographopoulos, Convergence towards attractors for a degenerate Ginzburg-Landau equation, Z. Angew. Math. Phys. 56 (2005), no. 1, 11-30. crossref(new window)

11.
N. I. Karachalios and N. B. Zographopoulos, Global attractors and convergence to equilibrium for degenerate Ginzburg-Landau and parabolic equations, Nonlinear Anal. 63 (2005), 1749-1768. crossref(new window)

12.
N. I. Karachalios and N. B. Zographopoulos, On the dynamics of a degenerate parabolic equation: Global bifurcation of stationary states and convergence, Calc. Var. Partial Differential Equations 25 (2006), no. 3, 361-393. crossref(new window)

13.
J.-L. Lions, Quelques Methodes de Resolution des Problemes aux Limites Non Lineaires, Dunod, Paris, 1969.

14.
J. C. Robinson, Infinite-Dimensional Dynamical Systems, Cambridge University Press, Cambridge, 2001.

15.
R. Rosa, The global attractor for the 2D Navier-Stokes flow on some unbounded domains, Nonlinear Anal. 32 (1998), no. 1, 71-85. crossref(new window)

16.
R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis, 2nd edition, Philadelphia, 1995.

17.
R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, 2nd edition, Springer-Verlag, 1997.

18.
B. Wang, Attractors for reaction-diffusion equations in unbounded domains, Physica D 179 (1999), no. 1, 41-52.