SOME BILATERAL GENERATING FUNCTIONS INVOLVING THE CHAN-CHYAN-SRIVASTAVA POLYNOMIALS AND SOME GENERAL CLASSES OF MULTIVARIABLE POLYNOMIALS

- Journal title : Communications of the Korean Mathematical Society
- Volume 28, Issue 4, 2013, pp.783-797
- Publisher : The Korean Mathematical Society
- DOI : 10.4134/CKMS.2013.28.4.783

Title & Authors

SOME BILATERAL GENERATING FUNCTIONS INVOLVING THE CHAN-CHYAN-SRIVASTAVA POLYNOMIALS AND SOME GENERAL CLASSES OF MULTIVARIABLE POLYNOMIALS

Gaboury, Sebastien; Ozarslan, Mehmet Ali; Tremblay, Richard;

Gaboury, Sebastien; Ozarslan, Mehmet Ali; Tremblay, Richard;

Abstract

Recently, Liu et al. [Bilateral generating functions for the Chan-Chyan-Srivastava polynomials and the generalized Lauricella function, Integral Transform Spec. Funct. 23 (2012), no. 7, 539-549] investigated, in several interesting papers, some various families of bilateral generating functions involving the Chan-Chyan-Srivastava polynomials. The aim of this present paper is to obtain some bilateral generating functions involving the Chan-Chyan-Sriavastava polynomials and three general classes of multivariable polynomials introduced earlier by Srivastava in [A contour integral involving Fox`s H-function, Indian J. Math. 14 (1972), 1-6], [A multilinear generating function for the Konhauser sets of biorthogonal polynomials suggested by the Laguerre polynomials, Pacific J. Math. 117 (1985), 183-191] and by Kaanolu and zarslan in [Two-sided generating functions for certain class of r-variable polynomials, Mathematical and Computer Modelling 54 (2011), 625-631]. Special cases involving the (Srivastava-Daoust) generalized Lauricella functions are also given.

Keywords

Chan-Chyan-Srivastava polynomials;Srivastava polynomials;(Srivastava-Daoust) generalized Lauricella functions;bilateral generating functions;special functions;

Language

English

References

1.

W.-C. Chan, C.-J. Chyan, and H. M. Srivastava, The Lagrange polynomials in several variables, Integral Transform Spec. Funct. 12 (2001), 139-148.

2.

K.-Y. Chen, S.-J. Liu, and H. M. Srivastava, Some new results for the Lagrange polynomials in several variables, ANZIAM J. 49 (2007), 243-258.

3.

A. Erdelyi, W. Magnus, F. Oberhettinger, and F. Tricomi, Higher Transcendental Functions. Vols. 1-3, McGraw-Hill, New York, 1953.

4.

E. Erkus and O. Duman, and H. M. Srivastava, Statistical approximation of certain positive linear operators constructed by means of the Chan-Chyan-Srivastava polynomials, Appl. Math. Comput. 182 (2006), 213-222.

5.

E. Erkus and H. M. Srivastava, A unified presentation of some families of multivariable polynomials, Integral Transform Spec. Funct. 17 (2006), 267-273.

6.

H.W. Gould and A. T. Hopper, Operational formulas connected with two generalizations of Hermite polynomials, Duke Math. J. 29 (1962), 51-63.

7.

C. Kaanoglu and M. A. Ozarslan, Two-sided generating functions for certain class of r-variable polynomials, Mathematical and Computer Modelling 54 (2011), 625-631.

8.

H. L. Krall and O. Frink, A new class of orthogonal polynomials: the Bessel polynomials, Trans. Amer. Math. Soc. 65 (1949), 100-115.

9.

S.-J. Liu, Bilateral generating function for the Lagrange polynomials and the Lauricella functions, Integral Transform Spec. Funct. 20 (2009), 519-527.

10.

S.-J. Liu, C.-J. Chyan, H.-C. Lu, and H. M. Srivastava, Bilateral generating functions for the Chan-Chyan-Srivastava polynomials and the generalized Lauricella functions, Integral Transform Spec. Funct. 23 (2012), no. 7, 539-549.

11.

S.-J. Liu, S.-D. Lin, H. M. Srivastava, and M.-M. Wong, Bilateral generating functions for the Erku¸s-Srivastava polynomials and the generalized Lauricella functions, Appl. Math. Comput. 218 (2012), 7685-7693.

12.

H. M. Srivastava, A contour integral involving Fox's H-function, Indian J. Math. 14 (1972), 1-6.

13.

H. M. Srivastava, A multilinear generating function for the Konhauser sets of biorthogonal polynomials suggested by the Laguerre polynomials, Pacific J. Math. 117 (1985), 183-191.

14.

H. M. Srivastava and M. Garg, Some integrals involving a general class of polynomials and multivariable H-function, Rev. Roumanie Phys. 32 (1987), 685-692.

15.

H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric Series, Halsted Press(Ellis Horwoor Limited)/ John Wiley and Sons, Chichester/New York, 1985.

16.

H. M. Srivastava and H. L. Manocha, A Treatise on Generating Functions, Halsted Press(Ellis Horwoor Limited)/ John Wiley and Sons, Chichester, New York, Brisbane and Toronto, 1984.

17.

H. M. Srivastava and M. A. Ozarslan, and C. Kaanoglu, Some families of generating functions for a certain class of three-variable polynomials, Integral Transform Spec. Funct. 21 (2010), no. 12, 885-896.

18.

H. M. Srivastava and N. P. Singh, The integration of certain products of the multivariable H-function with a general class of polynomials, Rend. Circ. Mat. Palermo 32 (1983), no. 2, 157-187.

19.

G. Szego, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., Vol. 23, Fourth edition, Amer. Math. Soc., Providence, Rhode Island, 1975.