CONVERGENCE OF MODIFIED MULTI-STEP ITERATIVE FOR A FINITE FAMILY OF ASYMPTOTICALLY QUASI-NONEXPANSIVE MAPPINGS

- Journal title : Communications of the Korean Mathematical Society
- Volume 29, Issue 1, 2014, pp.83-95
- Publisher : The Korean Mathematical Society
- DOI : 10.4134/CKMS.2014.29.1.083

Title & Authors

CONVERGENCE OF MODIFIED MULTI-STEP ITERATIVE FOR A FINITE FAMILY OF ASYMPTOTICALLY QUASI-NONEXPANSIVE MAPPINGS

Xiao, Juan; Deng, Lei; Yang, Ming-Ge;

Xiao, Juan; Deng, Lei; Yang, Ming-Ge;

Abstract

In a uniformly convex Banach space, we introduce a iterative scheme for a finite family of asymptotically quasi-nonexpansive mappings and utilize a new inequality to prove several convergence results for the iterative sequence. The results generalize and unify many important known results of relevant scholars.

Keywords

uniformly convex Banach space;fixed point;asymptotically nonexpansive mapping;asymptotically quasi-nonexpansive mapping;

Language

English

References

1.

S. S. Chang, H. W. Joseph Lee, and C. K. Chan, On Reich's strong convergence theorem for asymptotically nonexpansive mappings in Banach spaces, Nonlinear Anal. 66 (2007), no. 11, 2364-2374.

2.

C. E. Chidume, Iterative algorithms for nonexpansive mappings and some of their generalizations, Nonlinear analysis and applications: to V. Lakshmikantham on his 80th birthday. Vol. 1, 2, 383-429, Kluwer Acad. Publ., Dordrecht, 2003.

3.

C. E. Chidume and B. Ali, Weak and strong convergence theorems for finite families of asymptotically nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 330 (2007), no. 1, 377-387.

4.

C. E. Chidume, J. L. Li, and A. Udomene, Convergence of paths and approximation of fixed points of asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 133 (2005), no. 2, 473-480.

5.

C. E. Chidume, E. U. Ofoedu, and H. Zegeye, Strong and weak convergence theorem for asymptotically nonexpansive mappings, J. Math. Anal. Appl. 280 (2003), no. 2, 364-374.

6.

C. E. Chidume and N. Shahzad, Strong convergence of an implicit iteration process for a finite family of nonexpansive mappings, Nonlinear Anal. 62 (2005), no. 6, 1149-1156.

7.

Y. J. Cho, H. Y. Zhou, and G. Guo, Weak and strong convergence theorems for three-step iterations with errors for asymptotically nonexpansive mappings, Comput. Math. Appl. 47 (2004), no. 4-5, 707-717.

8.

K. Goebel and W. A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35 (1972), 171-174.

9.

A. R. Khan and M. A. Ahmed, Convergence of a general iterative scheme for a finite family of asymptotically quasi-nonexpansive mappings in convex metric spaces and applications, J. Appl. Math. Comput. 59 (2010), no. 8, 2990-2995.

10.

A. R. Khan, A. A. Domlo, and H. Fukhar-ud-din, Common fixed points Noor iteration for a finite family of asymptotically quasi-nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 341 (2008), no. 1, 1-11.

11.

H. Kiziltunc and S. Temir, Convergence theorems by a new iteration process for a finite family of nonself asymptotically nonexpansive mappings with errors in Banach spaces, J. Appl. Math. Comput. 61 (2011), no. 9, 2480-2489.

12.

M. O. Osilike and S. C. Aniagbosor, Weak and strong convergence theorems for fixed points of asymptotically nonexpansive mappings, Math. Comput. Modelling 32 (2000), no. 10, 1181-1191.

13.

B. E. Rhoades and S. M. Soltuz, The equivalence between Mann-Ishikawa iterations and multistep iteration, Nonlinear Anal. 58 (2004), no. 1-2, 219-228.

14.

J. Schu, Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, Bull. Austral. Math. Soc. 43 (1991), no. 1, 153-159.

15.

S. Suantai, Weak and strong convergence criteria of Noor iterations for asymptotically nonexpansive mappings, J. Math. Anal. Appl. 311 (2005), no. 2, 506-517.

16.

Z. H. Sun, Strong convergence of an implicit iteration process for a finite family of asymptotically quasi-nonexpansive mappings, J. Math. Anal. Appl. 286 (2003), no. 1, 351-358.

17.

H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. 16 (1991), no. 12, 1127-1138.

18.

H. K. Xu and R. Ori, An implicit iterative process for nonexpansive mappings, Numer. Funct. Anal. Optim. 22 (2001), 767-773.