JOURNAL BROWSE
Search
Advanced SearchSearch Tips
DECOMPOSITION FORMULAE FOR GENERALIZED HYPERGEOMETRIC FUNCTIONS WITH THE GAUSS-KUMMER IDENTITY
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
DECOMPOSITION FORMULAE FOR GENERALIZED HYPERGEOMETRIC FUNCTIONS WITH THE GAUSS-KUMMER IDENTITY
Hayashi, Naoya; Matsui, Yutaka;
  PDF(new window)
 Abstract
In the theory of special functions, it is important to study some formulae describing hypergeometric functions with other hypergeometric functions. In this paper, we give some methods to obtain a lot of decomposition formulae for generalized hypergeometric functions.
 Keywords
generalized hypergeometric functions;Gauss-Kummer identity;decomposition formulae;
 Language
English
 Cited by
1.
Generalized hypergeometric function identities at argument±1, Integral Transforms and Special Functions, 2014, 25, 11, 909  crossref(new windwow)
 References
1.
J. L. Burchnall and T. W. Chaundy, Expansions of Appell's double hypergeometric functions, Quart. J. Math. Oxford Ser. 11 (1940), 249-270.

2.
J. L. Burchnall and T. W. Chaundy, Expansions of Appell's double hypergeometric function. II, Quart. J. Math. Oxford Ser. 12 (1941), 112-128.

3.
T. W. Chaundy, Expansions of hypergeometric functions, Quart. J. Math. Oxford Ser. 13 (1942), 159-171.

4.
J. Choi and A. Hasanov, Applications of the operator H(${\alpha}$, ${\beta}$) to the Humbert double hypergeometric functions, Comput. Math. Appl. 61 (2011), no. 3, 663-671. crossref(new window)

5.
J. Choi and A. Hasanov, Certain decomposition formulas of generalized hypergeometric functions $_pF_q$ and some formulas of an analytic continuation of the Clausen function $_3F_2$, Commun. Korean Math. Soc. 27 (2012), no. 1, 107-116. crossref(new window)

6.
A. Hasanov and H. M. Srivastava, Some decomposition formulas associated with the Lauricella function $F_A^{({\gamma})}$ and other multiple hypergeometric functions, Appl. Math. Lett. 19 (2006), no. 2, 113-121. crossref(new window)

7.
A. Hasanov and H. M. Srivastava, Decomposition formulas associated with the Lauricella multivariable hypergeometric functions, Compt. Math. Appl. 53 (2007), no. 7, 1119-1128. crossref(new window)

8.
A. Hasanov, H. M. Srivastava, and M. Turaev, Decomposition formulas for some triple hypergeometric functions, J. Math. Anal. Appl. 324 (2006), no. 2, 955-969. crossref(new window)

9.
A. Hasanov, M. Turaev, and J. Choi, Decomposition formulas for the generalized hypergeometric $_4F_3$ function, Honam Math. J. 32 (2010), no. 1, 1-16. crossref(new window)

10.
K. Iwasaki, H. Kimura, S. Shimomura, and M. Yoshida, From Gauss to Painleve, A modern theory of special functions, Aspects of Mathematics, E16, Friedr. Vieveg & Sohn, Braunschweig, 1991.

11.
H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric Series, Halsted press, Wiley, New York, 1985.