JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SHIFTED HARMONIC SUMS OF ORDER TWO
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SHIFTED HARMONIC SUMS OF ORDER TWO
Sofo, Anthony;
  PDF(new window)
 Abstract
We develop a set of identities for Euler type sums. In particular we investigate products of shifted harmonic numbers of order two and reciprocal binomial coefficients.
 Keywords
harmonic numbers;binomial coefficients and gamma function;polygamma function;combinatorial series identities and summation formulas;partial fraction approach;hypergeometric identity;
 Language
English
 Cited by
1.
Some evaluation of harmonic number sums, Integral Transforms and Special Functions, 2016, 27, 12, 937  crossref(new windwow)
2.
Quadratic and cubic harmonic number sums, Journal of Mathematical Analysis and Applications, 2017, 447, 1, 419  crossref(new windwow)
 References
1.
J. Choi, Finite summation formulas involving binomial coefficients, harmonic numbers and generalized harmonic numbers, J. Ineq. Appl. 49 (2013), 11 p.

2.
J. Choi, Certain summation formulas involving harmonic numbers and generalized harmonic numbers, Appl. Math. Comput. 218 (2011), no. 3, 734-740. crossref(new window)

3.
J. Choi and D. Cvijovic, Values of the polygamma functions at rational arguments, J. Phys. A: Math. Theor. 40 (2007), no. 50, 15019-15028; Corrigendum, ibidem 43 (2010), no. 23, 239801, 1p. crossref(new window)

4.
J. Choi and H. M. Srivastava, Some summation formulas involving harmonic numbers and generalized harmonic numbers, Math. Comp. Modelling 54 (2011), no. 9-10, 2220-2234. crossref(new window)

5.
W. Chu, Summation formulae involving harmonic numbers, Filomat. 26 (2012), no. 1, 143-152. crossref(new window)

6.
W. Chu, Infinite series identities on harmonic numbers, Results Math. 61 (2012), no. 3-4, 209-221. crossref(new window)

7.
A. Dil and V. Kurt, Polynomials related to harmonic numbers and evaluation of harmonic number series II, Appl. Anal. Discrete Math. 5 (2011), no. 2, 212-229. crossref(new window)

8.
H.-T. Jin and L. H. Sun, On Spiess's conjecture on harmonic numbers, Discrete Appl. Math. 161 (2013), no. 13-14, 2038-2041. crossref(new window)

9.
K. Kolbig, The polygamma function ${\psi}$ (x) for x = 1/4 and x = 3/4, J. Comput. Appl. Math. 75 (1996), no. 1, 43-46.

10.
H. Liu and W. Wang, Harmonic number identities via hypergeometric series and Bell polynomials, Integral Transforms Spec. Funct. 23 (2012), no. 1, 49-68. crossref(new window)

11.
E. Munarini, Riordan matrices and sums of harmonic numbers, Appl. Anal. Discrete Math. 5 (2011), no. 2, 176-200. crossref(new window)

12.
A. Sofo, Computational Techniques for the Summation of Series, Kluwer Academic/Plenum Publishers, New York, 2003.

13.
A. Sofo, Sums of derivatives of binomial coefficients, Adv. in Appl. Math. 42 (2009), no. 1, 123-134. crossref(new window)

14.
A. Sofo, Harmonic sums and integral representations, J. Appl. Anal. 16 (2010), no. 2, 265-277.

15.
A. Sofo, Harmonic number sums in higher powers, J. Math. Anal. 2 (2011), no. 2, 15-22.

16.
A. Sofo, Summation formula involving harmonic numbers, Anal. Math. 37 (2011), no. 1, 51-64. crossref(new window)

17.
A. Sofo, New classes of harmonic number identities, J. Integer Seq. 15 (2012), Article 12.7.4.

18.
A. Sofo, Finite number sums in higher order powers of harmonic numbers, Bull. Math. Anal. Appl. 5 (2013), no. 1, 71-79.

19.
A. Sofo, Mixed binomial sum identities, Integral Transforms Spec. Funct. 24 (2013), no. 3, 187-200. crossref(new window)

20.
A. Sofo and H. M. Srivastava, Identities for the harmonic numbers and binomial coefficients, Ramanujan J. 25 (2011), no. 1, 93-113. crossref(new window)

21.
H. M. Srivastava and J. Choi, Series Associated with the Zeta and Related Functions, Kluwer Academic Publishers, London, 2001.