JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON A GENERALIZED BERGE STRONG EQUILIBRIUM
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON A GENERALIZED BERGE STRONG EQUILIBRIUM
Kim, Won Kyu;
  PDF(new window)
 Abstract
In this paper, we first introduce a generalized concept of Berge strong equilibrium for a generalized game of normal form, and using a fixed point theorem for compact acyclic maps in admissible convex sets, we establish the existence theorem of generalized Berge strong equilibrium for the game with acyclic values. Also, we have demonstrated by examples that our new approach is useful to produce generalized Berge strong equilibria.
 Keywords
generalized Berge strong equilibrium;Nash equilibrium;acyclic;admissible;
 Language
English
 Cited by
 References
1.
K. Y. Abalo and M. M. Kostreva, Fixed points, Nash games and their organizations, Topol. Methods Nonlinear Anal. 8 (1996), no. 1, 205-215.

2.
K. Y. Abalo and M. M. Kostreva, Equi-well-posed games, J. Optim. Theory Appl. 89 (1996), no. 1, 89-99. crossref(new window)

3.
K. Y. Abalo and M. M. Kostreva, Some existence theorems of Nash and Berge equilibria, Appl. Math. Lett. 17 (2004), no. 5, 569-573. crossref(new window)

4.
K. Y. Abalo and M. M. Kostreva, Berge equilibrium: Some recent results from fixed-point theorems, Appl. Math. Comput. 169 (2005), no. 1, 624-638. crossref(new window)

5.
J. P. Aubin, Mathematical Methods of Game and Economic Theory, North-Holland, Amsterdam, 1979.

6.
C. Berge, Theorie Generale des Jeux a n-Personnes, Gauthier Villars, Paris, 1957.

7.
M. Daghdak and M. Florenzano, On the existence of Berge strong equilibrium, Int. Game Theory Review 13 (2011), no. 3, 325-340. crossref(new window)

8.
G. Debreu, A social equilibrium existence theorem, Proc. Nat. Acad. Sci. U.S.A. 38 (1952), 886-893. crossref(new window)

9.
M. Larbani and R. Nessah, Sur l'equilibre fort selon Berge, RAIRO Oper. Res. 35 (2001), no. 4, 439-451. crossref(new window)

10.
M. Larbani and R. Nessah, A note on the existence of Berge and Berge-Nash equilibria, Math. Social Sci. 55 (2008), no. 2, 258-271. crossref(new window)

11.
J. F. Nash, Equilibrium points in n-person games, Pro. Nat. Acad. Sci. U.S.A. 36 (1950), 48-49. crossref(new window)

12.
J. F. Nash, Noncooperative games, Ann. of Math. 54 (1951), 286-295. crossref(new window)

13.
R. Nessah, M. Larbani, and T. Tazdait, A note on Berge equilibrium, Appl. Math. Lett. 20 (2007), no. 8, 926-932. crossref(new window)

14.
S. Park, Acyclic versions of the von Neumann and Nash equilibrium, J. Comput. Appl. Math. 113 (2000), no. 1-2, 83-91. crossref(new window)

15.
M. S. Radjef, Sur l'existence d'un equilibre de Berge pour un jeu differentiel a n-personnes, Cahiers Math. 1988 (1988), no. 1, 89-93.

16.
V. I. Zhukovskii, Linear Quadratic Differential Games, Naoukova Doumka, Kiev, 1994.