JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON A GENERALIZED BERGE STRONG EQUILIBRIUM
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON A GENERALIZED BERGE STRONG EQUILIBRIUM
Kim, Won Kyu;
  PDF(new window)
 Abstract
In this paper, we first introduce a generalized concept of Berge strong equilibrium for a generalized game $\mathcal{G}
 Keywords
generalized Berge strong equilibrium;Nash equilibrium;acyclic;admissible;
 Language
English
 Cited by
 References
1.
K. Y. Abalo and M. M. Kostreva, Fixed points, Nash games and their organizations, Topol. Methods Nonlinear Anal. 8 (1996), no. 1, 205-215. crossref(new window)

2.
K. Y. Abalo and M. M. Kostreva, Equi-well-posed games, J. Optim. Theory Appl. 89 (1996), no. 1, 89-99. crossref(new window)

3.
K. Y. Abalo and M. M. Kostreva, Some existence theorems of Nash and Berge equilibria, Appl. Math. Lett. 17 (2004), no. 5, 569-573. crossref(new window)

4.
K. Y. Abalo and M. M. Kostreva, Berge equilibrium: Some recent results from fixed-point theorems, Appl. Math. Comput. 169 (2005), no. 1, 624-638. crossref(new window)

5.
J. P. Aubin, Mathematical Methods of Game and Economic Theory, North-Holland, Amsterdam, 1979.

6.
C. Berge, Theorie Generale des Jeux a n-Personnes, Gauthier Villars, Paris, 1957.

7.
M. Daghdak and M. Florenzano, On the existence of Berge strong equilibrium, Int. Game Theory Review 13 (2011), no. 3, 325-340. crossref(new window)

8.
G. Debreu, A social equilibrium existence theorem, Proc. Nat. Acad. Sci. U.S.A. 38 (1952), 886-893. crossref(new window)

9.
M. Larbani and R. Nessah, Sur l'equilibre fort selon Berge, RAIRO Oper. Res. 35 (2001), no. 4, 439-451. crossref(new window)

10.
M. Larbani and R. Nessah, A note on the existence of Berge and Berge-Nash equilibria, Math. Social Sci. 55 (2008), no. 2, 258-271. crossref(new window)

11.
J. F. Nash, Equilibrium points in n-person games, Pro. Nat. Acad. Sci. U.S.A. 36 (1950), 48-49. crossref(new window)

12.
J. F. Nash, Noncooperative games, Ann. of Math. 54 (1951), 286-295. crossref(new window)

13.
R. Nessah, M. Larbani, and T. Tazdait, A note on Berge equilibrium, Appl. Math. Lett. 20 (2007), no. 8, 926-932. crossref(new window)

14.
S. Park, Acyclic versions of the von Neumann and Nash equilibrium, J. Comput. Appl. Math. 113 (2000), no. 1-2, 83-91. crossref(new window)

15.
M. S. Radjef, Sur l'existence d'un equilibre de Berge pour un jeu differentiel a n-personnes, Cahiers Math. 1988 (1988), no. 1, 89-93.

16.
V. I. Zhukovskii, Linear Quadratic Differential Games, Naoukova Doumka, Kiev, 1994.