JOURNAL BROWSE
Search
Advanced SearchSearch Tips
NORM OF THE COMPOSITION OPERATOR FROM BLOCH SPACE TO BERGMAN SPACE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
NORM OF THE COMPOSITION OPERATOR FROM BLOCH SPACE TO BERGMAN SPACE
Kasuga, Kazuhiro;
  PDF(new window)
 Abstract
In this paper, we study some quantity equivalent to the norm of Bloch to composition operator where Ap is the weighted Bergman space on the unit ball of (0 < p < and -1 < < ).
 Keywords
composition operator;Bloch space;Bergman space;
 Language
English
 Cited by
 References
1.
P. Ahern, On the behavior near a torus of functions holomorphic in the ball, Pacific J. Math. 107 (1983), no. 2, 267-278. crossref(new window)

2.
P. Ahern and W. Rudin, Bloch functions, BMO, and boundary zeros, Indiana Univ. Math. J. 36 (1987), no. 1, 131-148. crossref(new window)

3.
S. Dai, H. Chen, and Y. Pan, The Schwarz-Pick lemma of high order in several variables, Michigan Math. J. 59 (2010), no. 3, 517-533. crossref(new window)

4.
M. Jevtic, On M-harmonic space $D^s_p$, Filomat 9 (1995), no. 1, 77-82.

5.
E. G. Kwon, Hyperbolic mean growth of bounded holomorphic functions in the ball, Trans. Amer. Math. Soc. 355 (2003), no. 3, 1269-1294. crossref(new window)

6.
E. G. Kwon and J. Lee, Norm of the composition operator mapping Bloch space into Hardy or Bergman space, Commun. Korean Math. Soc. 18 (2003), no. 4, 653-659. crossref(new window)

7.
W. Ramey and D. Ullrich, Bounded mean oscillation of Bloch pull-backs, Math. Ann. 291 (1991), no. 4, 591-606. crossref(new window)

8.
W. Rudin, Function Theory in the Unit Ball of $\mathbb{C}^n$, Springer-Verlag, New York, 1980.

9.
W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, 1987.

10.
M. Stoll, Invariant Potential Theory in the Unit Ball of $\mathbb{C}^n$, Cambridge Univ. Press, London, 1994.