JOURNAL BROWSE
Search
Advanced SearchSearch Tips
POLARIZATION AND UNCONDITIONAL CONSTANTS OF 𝓟(2d*(1,ω)2)
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
POLARIZATION AND UNCONDITIONAL CONSTANTS OF 𝓟(2d*(1,ω)2)
Kim, Sung Guen;
  PDF(new window)
 Abstract
We explicitly calculate the polarization and unconditional constants of .
 Keywords
extreme 2-homogeneous polynomials;the predual of two dimensional Lorentz sequence space;the polarization constant;the unconditional constant;
 Language
English
 Cited by
1.
Exposed 2-Homogeneous Polynomials on the two-Dimensional Real Predual of Lorentz Sequence Space, Mediterranean Journal of Mathematics, 2016, 13, 5, 2827  crossref(new windwow)
 References
1.
R. M. Aron, Y. S. Choi, S. G. Kim and M. Maestre, Local properties of polynomials on a Banach space, Illinois J. Math. 45 (2001), no. 1, 25-39.

2.
Y. S. Choi, H. Ki, and S. G. Kim, Extreme polynomials and multilinear forms on $l_1$, J. Math. Anal. Appl. 228 (1998), no. 2, 467-482. crossref(new window)

3.
Y. S. Choi and S. G. Kim, The unit ball of P($^2l^2_2$), Arch. Math. (Basel) 71 (1998), no. 6, 472-480. crossref(new window)

4.
Y. S. Choi and S. G. Kim, Extreme polynomials on $c_0$, Indian J. Pure Appl. Math. 29 (1998), no. 10, 983-989.

5.
Y. S. Choi and S. G. Kim, Smooth points of the unit ball of the space P($^2l_1$), Results Math. 36 (1999), no. 1-2, 26-33. crossref(new window)

6.
Y. S. Choi and S. G. Kim, Exposed points of the unit balls of the spaces P($^2l^2_p$) (p = 1, 2, ${\infty}$), Indian J. Pure Appl. Math. 35 (2004), no. 1, 37-41.

7.
S. Dineen, Complex Analysis on Infinite Dimensional Spaces, Springer-Verlag, London, 1999.

8.
S. Dineen, Extreme integral polynomials on a complex Banach space, Math. Scand. 92 (2003), no. 1, 129-140.

9.
J. L. Gamez-Merino, G. A. Munoz-Fernandez, V. M. Sanchez, and J. B. Seoane-Sepulveda, Inequalities for polynomials on the unit square via the Krein-Milman Theorem, J. Convex Anal. 20 (2013), no. 1, 125-142.

10.
B. C. Grecu, Geometry of 2-homogeneous polynomials on $l_p$ spaces, 1 < p < ${\infty}$, J. Math. Anal. Appl. 273 (2002), no. 2, 262-282.

11.
B. C. Grecu, G. A. Munoz-Fernandez, and J. B. Seoane-Sepulveda, Unconditional constants and polynomial inequalities, J. Approx. Theory 161 (2009), no. 2, 706-722. crossref(new window)

12.
S. G. Kim, Exposed 2-homogeneous polynomials on P($^2l^2_p$) ($1\;{\leq}p\;{\leq}\;{\infty}$), Math. Proc. R. Ir. Acad. 107 (2007), no. 2, 123-129. crossref(new window)

13.
S. G. Kim, The unit ball of $L_s$($^2l^2_{\infty}$), Extracta Math. 24 (2009), no. 1, 17-29.

14.
S. G. Kim, The unit ball of P($^2d{\ast}(1,w)^2$), Math. Proc. R. Ir. Acad. 111A (2011), no. 2, 79-94.

15.
S. G. Kim, Smooth polynomials of P($^2d{\ast}(1,w)^2$), Math. Proc. R. Ir. Acad. 113A (2013), no. 1, 45-58.

16.
S. G. Kim, The unit ball of $L_s(^2d{\ast}(1,w)^2)$, Kyungpook Math. J. 53 (2013), no. 2, 295-306. crossref(new window)

17.
S. G. Kim and S. H. Lee, Exposed 2-homogeneous polynomials on Hilbert spaces, Proc. Amer. Math. Soc. 131 (2003), no. 2, 449-453. crossref(new window)

18.
J. Lee and K. S. Rim, Properties of symmetric matrices, J. Math. Anal. Appl. 305 (2005), no. 1, 219-226. crossref(new window)

19.
L. Milev and N. Naidenov, Strictly definite extreme points of the unit ball in a polynomial space, C. R. Acad. Bulgare Sci. 61 (2008), no. 11, 1393-1400.

20.
G. A. Munoz-Fernandez, S. Revesz, and J. B. Seoane-Sepulveda, Geometry of homoge-neous polynomials on non symmetric convex bodies, Math. Scand. 105 (2009), no. 1, 147-160.

21.
G. A. Munoz-Fernandez and J. B. Seoane-Sepulveda, Geometry of Banach spaces of trinomials, J. Math. Anal. Appl. 340 (2008), no. 2, 1069-1087. crossref(new window)

22.
S. Revesz and Y. Sarantopoulos, Plank problems, polarization and Chebyshev constants, J. Korean Math. Soc. 41 (2004), no. 1, 157-174. crossref(new window)

23.
R. A. Ryan and B. Turett, Geometry of spaces of polynomials, J. Math. Anal. Appl. 221 (1998), no. 2, 698-711. crossref(new window)