JOURNAL BROWSE
Search
Advanced SearchSearch Tips
INEQUALITIES FOR THE NON-TANGENTIAL DERIVATIVE AT THE BOUNDARY FOR HOLOMORPHIC FUNCTION
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
INEQUALITIES FOR THE NON-TANGENTIAL DERIVATIVE AT THE BOUNDARY FOR HOLOMORPHIC FUNCTION
Ornek, Bulent Nafi;
  PDF(new window)
 Abstract
In this paper, we present some inequalities for the non-tangential derivative of f(z). For the function defined in the unit disc, with > , < 1, < 1, we estimate a module of a second non-tangential derivative of f(z) function at the boundary point , by taking into account their first nonzero two Maclaurin coefficients. The sharpness of these estimates is also proved.
 Keywords
Schwarz lemma on the boundary;holomorphic function;second non-tangential derivative;critical points;
 Language
English
 Cited by
 References
1.
T. Aliyev Azeroglu and B. N. Ornek, A refined Schwarz inequality on the boundary, Complex Var. Elliptic Equ. 58 (2013), no. 4, 571-577. crossref(new window)

2.
H. P. Boas, Julius and Julia: Mastering the art of the Schwarz lemma, Amer. Math. Monthly 117 (2010), no. 9, 770-785. crossref(new window)

3.
V. N. Dubinin, The Schwarz inequality on the boundary for functions regular in the disk, J. Math. Sci. 122 (2004), no. 6, 3623-3629. crossref(new window)

4.
G. M. Golusin, Geometric Theory of Functions of Complex Variable, [in Russian], 2nd edn., Moscow, 1966.

5.
H. T. Kaptanoglu, Some refined Schwarz-Pick lemmas, Michigan Math. J. 50 (2002), no. 3, 649-664. crossref(new window)

6.
B. N. Ornek, Sharpened forms of the Schwarz lemma on the boundary, Bull. Korean Math. Soc. 50 (2013), no. 6, 2053-2059. crossref(new window)

7.
R. Osserman, A sharp Schwarz inequality on the boundary, Proc. Amer. Math. Soc. 128 (2000), no. 12, 3513-3517. crossref(new window)

8.
Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Springer-Verlag, Berlin, 1992.

9.
H. Unkelbach, Uber die Randverzerrung bei konformer Abbildung, Math. Z. 43 (1938), no. 1, 739-742. crossref(new window)