JOURNAL BROWSE
Search
Advanced SearchSearch Tips
CRITERIA FOR A SYMMETRIZED MONOMIAL IN B(3) TO BE NON-HIT
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
CRITERIA FOR A SYMMETRIZED MONOMIAL IN B(3) TO BE NON-HIT
Janfada, Ali S.;
  PDF(new window)
 Abstract
We find criteria for symmetrized monomials to be non-hit in the -algebra of symmetric polynomials in three variables, where is the mod 2 Steenrod algebra.
 Keywords
hit problem;symmetric hit problem;Steenrod algebra;
 Language
English
 Cited by
 References
1.
D. P. Carlisle and R. M. W. Wood, The boundedness conjecture for the action of the Steenrod algebra on polynomials, Adams Memorial Symposium on Algebraic Topology, 2 (Manchester, 1990), 203-216, London Math. Soc. Lecture Note Ser., 176, Cambridge Univ. Press, Cambridge, 1992.

2.
A. S. Janfada, The Hit Problem for Symmetric Polynomials Over the Steenrod Algebra, PhD thesis, Manchester University, UK, 2000.

3.
A. S. Janfada, A criterion for a monomial in P(3) to be hit, Math. Proc. Cambridge Philos. Soc. 145 (2008), no. 3, 587-599. crossref(new window)

4.
A. S. Janfada, On a conjecture on the symmetric hit problem, Rend. Circ. Mat. Palermo 60 (2011), no. 3, 403-408. crossref(new window)

5.
A. S. Janfada and R. M. W. Wood, The hit problem for symmetric polynomials over the Steenrod algebra, Math. Proc. Cambridge Philos. Soc. 133 (2002), no. 2, 295-303.

6.
A. S. Janfada and R. M. W. Wood, Generating H*(BO(3), $F_2$) as a module over the Steenrod algebra, Math. Proc. Cambridge Philos. Soc. 134 (2003), no. 2, 239-258. crossref(new window)

7.
M. Kameko, Generators of the cohomology of $BV_3$, J. Math. Kyoto Univ. 38 (1998), no. 3, 587-593.

8.
F. P. Peterson, A-generators for certain polynomial algebras, Math. Proc. Cambridge Philos. Soc. 105 (1989), no. 2, 311-312. crossref(new window)

9.
L. Smith, Polynomial Invariants of Finite Groups, Res. Notes Math., vol. 6, A. K. Peters Ltd. Wellesley, MA, 1995.

10.
N. Sum, The hit problem for the polynomial algebra of four variables, Seoul, November 3, (2007), http://www.kms.or.kr/data/asia/files/nguyensum.pdf

11.
N. Sum, The negative answer to Kameko's conjecture on the hit problem, Adv. Math. 225 (2010), no. 5, 2365-2390. crossref(new window)