JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A SIMPLY CONNECTED MANIFOLD WITH TWO SYMPLECTIC DEFORMATION EQUIVALENCE CLASSES WITH DISTINCT SIGNS OF SCALAR CURVATURES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A SIMPLY CONNECTED MANIFOLD WITH TWO SYMPLECTIC DEFORMATION EQUIVALENCE CLASSES WITH DISTINCT SIGNS OF SCALAR CURVATURES
Kim, Jongsu;
  PDF(new window)
 Abstract
We present a smooth simply connected closed eight dimensional manifold with distinct symplectic deformation equivalence classes [[]], i
 Keywords
almost Khler metric;scalar curvature;symplectic manifold;symplectic deformation equivalence class;
 Language
English
 Cited by
1.
SIMPLY CONNECTED MANIFOLDS OF DIMENSION 4k WITH TWO SYMPLECTIC DEFORMATION EQUIVALENCE CLASSES,;

한국수학교육학회지시리즈B:순수및응용수학, 2015. vol.22. 4, pp.359-364 crossref(new window)
1.
SIMPLY CONNECTED MANIFOLDS OF DIMENSION 4k WITH TWO SYMPLECTIC DEFORMATION EQUIVALENCE CLASSES, The Pure and Applied Mathematics, 2015, 22, 4, 359  crossref(new windwow)
 References
1.
R. Barlow, A simply connected surface of general type with $p_g$ = 0, Invent. Math. 79 (1985), no. 2, 293-301. crossref(new window)

2.
A. L. Besse, Einstein Manifolds, Ergebnisse der Mathematik, 3 Folge, Band 10, Springer- Verlag, 1987.

3.
D. E. Blair, On the set of metrics associated to a symplectic or contact form, Bull. Inst. Math. Acad. Sinica 11 (1983), no. 3, 297-308.

4.
F. Catanese and C. LeBrun, On the scalar curvature of Einstein manifolds, Math. Res. Lett. 4 (1997), no. 6, 843-854. crossref(new window)

5.
J. Kim and C. Sung, Scalar curvature functions of almost-Kahler metrics, http://arxiv.org/abs/1409.4004.

6.
D. McDuff and D. Salamon, Introduction to Symplectic Topology, Oxford University Press, New York, 1998.

7.
C. T. McMullen and C. H. Taubes, 4-manifolds with inequivalent symplectic forms and 3-manifolds with inequivalent fibrations, Math. Res. Lett. 6 (1999), no. 5-6, 681-696. crossref(new window)

8.
J. Petean, The Yamabe invariant of simply connected manifolds, J. Reine Angew. Math. 523 (2006), 225-231.

9.
Y. Ruan, Symplectic topology on algebraic 3-folds, J. Differential Geom. 39 (1994), no. 1, 215-227.

10.
D. Salamon, Uniqueness of symplectic structures, Acta Math. Vietnam. 38 (2013), no. 1, 123-144. crossref(new window)