JOURNAL BROWSE
Search
Advanced SearchSearch Tips
THE LEFSCHETZ CONDITION ON PROJECTIVIZATIONS OF COMPLEX VECTOR BUNDLES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
THE LEFSCHETZ CONDITION ON PROJECTIVIZATIONS OF COMPLEX VECTOR BUNDLES
Nishinobu, Hirokazu; Yamaguchi, Toshihiro;
  PDF(new window)
 Abstract
We consider a condition under which the projectivization of a complex k-bundle over an even-dimensional manifold M can have the hard Lefschetz property, affected by [10]. It depends strongly on the rank k of the bundle . Our approach is purely algebraic by using rational Sullivan minimal models [5]. We will give some examples.
 Keywords
projectivization;c-symplectic;the Lefschetz property;Sullivan model;formal;projective (n)-Lefschetz;projective non-Lefschetz;
 Language
English
 Cited by
 References
1.
R. Body, M. Mimura, H. Shiga, and D. Sullivan, p-universal spaces and rational homotopy types, Comment. Math. Helv. 73 (1998), no. 3, 427-442. crossref(new window)

2.
R. Bott and L. Tu, Differential Forms in Algebraic Topology, GTM 82, Springer, 1982.

3.
G. R. Cavalcanti, The Lefschetz property, formality and blowing up in symplectic geometry, Trans. Amer. Math. Soc. 359 (2007), no. 1, 333-348. crossref(new window)

4.
P. Deligne, P. Griffith, J. Morgan, and D. Sullivan, Real homotopy theory of Kahler manifolds, Invent. Math. 29 (1975), no. 3, 245-274. crossref(new window)

5.
Y. Felix, S. Halperin, and J. C. Thomas, Rational Homotopy Theory, Graduate Texts in Mathematics 205, Springer-Verlag, 2001.

6.
Y. Felix, J. Oprea, and D. Tanre, Algebraic Models in Geometry, GTM 17, Oxford, 2008.

7.
M. Fernandez, V. Munoz, and L. Ugarte, Weakly Lefschetz symplectic manifolds, Trans. Amer. Math. Soc. 359 (2007), no. 4, 1851-1873.

8.
P. Hilton, G. Mislin, and J. Roitberg, Localization of Nilpotent Groups and Spaces, North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1975.

9.
J. Kedra, KS-models and symplectic structures on total spaces of bundles, Bull. Belg. Math. Soc. Simon Stevin 7 (2000), no. 3, 377-385.

10.
G. Lupton and J. Oprea, Symplectic manifolds and formality, J. Pure. Appl. Algebra. 91 (1994), no. 1-3, 193-207. crossref(new window)

11.
D. McDuff, Examples of simply-connected symplectic non-Kahlerian manifolds, J. Differential Geom. 20 (1984), no. 1, 267-277,

12.
M. Mimura, G. Nishida, and H. Toda, Localization of CW-complexes and its applications, J. Math. Soc. Japan 23 (1971), 593-624. crossref(new window)

13.
J. Oprea, The propagation of non-Lefschetz type, the Gottlieb group and related questions, J. Fixed Point Theory Appl. 3 (2008), no. 1, 63-77. crossref(new window)

14.
J. Sato and T. Yamaguchi, Pre-c-symplectic condition for the product of odd-spheres, J. Homotopy Relat. Struct. 8 (2013), no. 1, 13-34. crossref(new window)

15.
D. Sullivan, Infinitesimal computations in topology, Inst. Hautes Etudes Sci. Publ. Math. 47 (1977), 269-331. crossref(new window)

16.
A. Tralle, Homotopy properties of closed symplectic manifolds, Univ. Iagel. Acta Math. 38 (2000), 105-128.

17.
A. Tralle and J. Oprea, Symplectic manifolds with no Kahler structure, Lecture Notes in Mathematics, 1661. Springer-Verlag, Berlin, 1997.

18.
A. Weinstein, Fat bundles and symplectic manifolds, Adv. in Math. 37 (1980), no. 3, 239-250. crossref(new window)