JOURNAL BROWSE
Search
Advanced SearchSearch Tips
NUMERICAL RANGE AND SOT-CONVERGENCY
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
NUMERICAL RANGE AND SOT-CONVERGENCY
ABDOLLAHI, ABDOLAZIZ; HEYDARI, MOHAMMAD TAGHI;
  PDF(new window)
 Abstract
A sequence of composition operators on Hardy space is considered. We prove that, by numerical range properties, it is SOT-convergence but not converge.
 Keywords
numerical range;composition operator;Hardy space;
 Language
English
 Cited by
 References
1.
A. Abdollahi, The numerical range of a composition operator with conformal automorphism symbol, Linear Algebra Appl. 408 (2005), 177-188. crossref(new window)

2.
P. S. Bourdon and J. H. Shapiro, The numerical range of automorphic composition operators, J. Math. Analy. Appl. 251 (2000), no. 2, 839-854. crossref(new window)

3.
P. S. Bourdon and J. H. Shapiro, When is zero in the numerical range of a composition operator, Integr. Equ. Oper. Theory. 44 (2002), no. 4, 410-441. crossref(new window)

4.
C. C. Cowen and B. D. Maccluer, Composition Operators on Spaces of Analytic Fnctions, CRC Press, Boca Raton, 1995.

5.
K. E. Gustafon and K. M. Rao, The Numerical Range, the Field of Values of Linear Operators and Matrices, Springer, New York, 1997.

6.
P. R. Halmos, Hilbert Space Problem Book, Springer, New York, 1982.

7.
R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, 1985.

8.
J. E. Littlewood, On inequalities in the theory of functions, Proc. London Math. Soc. 23 (1925), 481-519.

9.
V. Matache, Numerical ranges of composition operators, Linear Algebra Appl. 331 (2001), no. 1-3, 61-74. crossref(new window)

10.
W. Rudin, Real and Complex Analysis, McGraw-Hill Book Co., New York, 1987.

11.
J. H. Shapiro, Composition Operators and Classical Function Theory, Springer-Verlag. 1993.

12.
R. K. Singh and J. S. Manhas, Composition Operators on Function Spaces, North-Holland Publishing Co., Amsterdam, 1993.