JOURNAL BROWSE
Search
Advanced SearchSearch Tips
π AND OTHER FORMULAE IMPLIED BY HYPERGEOMETRIC SUMMATION THEOREMS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
π AND OTHER FORMULAE IMPLIED BY HYPERGEOMETRIC SUMMATION THEOREMS
KIM, YONG SUP; RATHIE, ARJUN KUMAR; WANG, XIAOXIA;
  PDF(new window)
 Abstract
By employing certain extended classical summation theorems, several surprising and other formulae are displayed.
 Keywords
formula;Gauss summation theorem;Bailey summation theorem;Watson summation theorem;extension summation theorem;
 Language
English
 Cited by
 References
1.
V. Adamchik and S. Wagon, A simple formula for ${\pi}$, Amer. Math. Monthly 104 (1997), no. 9, 852-855. crossref(new window)

2.
D. H. Bailey and J. M. Borwein, Experimental mathematics: examples, methods and implications, Notices Amer. Math. Soc. 52 (2005), no. 5, 502-514.

3.
W. N. Bailey, Generalized Hypergeometric Series, Cambridge University Press, Cambridge, 1935.

4.
W. N. Bailey, P. B. Borwein, and S. Plouffe, On the rapid computation of various polylogarithmic constants, Math. Comp. 66 (1997), no. 218, 903-913. crossref(new window)

5.
J. M. Borwein and P. B. Borwein, ${\pi}$ and the AGM, John Wiley & Sons, Inc., New York, 1987.

6.
H. C. Chan, More formulas for ${\pi}$, Amer. Math. Monthly 113 (2006), no. 5, 452-455. crossref(new window)

7.
W. Chu, ${\pi}$-formulae implied by Dougall's summation theorem for $_5F_4$-series, Ramanujan J. 26 (2011), no. 2, 251-255. crossref(new window)

8.
B. Gourevitch and J. Guillera, Construction of binomial sums for ${\pi}$ and polylogarithmic constant inspired by BBP formulas, Appl. Math. E-Notes 7 (2007), 237-246.

9.
J. Guillera, Hypergeometric identities for 10 extended Ramanujan type series, Ramanujan J. 15 (2008), no. 2, 219-234. crossref(new window)

10.
J. Guillera, History of the formulas and algorithms for ${\pi}$, Gems in experimental mathematics, 173-188, Contemp. Math., 517, Amer. Math. Soc., Providence, RI, 2010.

11.
Y. S. Kim, M. A. Rakha, and A. K. Rathie, Extensions of certain classical summation theorems for the series $_2F_1,\;_3F_2\;and\;_4F_3$ with applications in Ramanujan's summations, Int. J. Math. Math. Sci. 2010 (2010), 309503, 26 pp.

12.
J. L. Lavoie, F. Grondin, and A. K. Rathie, Generalizations of Watson's theorem on the sum of a $_3F_2$, Indian J. Math. 32 (1992), no. 1, 23-32.

13.
J. L. Lavoie, F. Grondin, and A. K. Rathie, Generalizations of Whipple's theorem on the sum of a $_3F_2$, J. Comput. Appl. Math. 72 (1996), no. 2, 293-300. crossref(new window)

14.
J. L. Lavoie, F. Grondin, A. K. Rathie, and K. Arora, Generalizations of Dixon's theorem on the sum of a $_3F_2$, Math. Comp. 62 (1994), no. 205, 267-276.

15.
A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series, Gordon and Breach Science, New York, 1986.

16.
M. A. Rakha and A. K. Rathie, Generalizations of classical summation theorems for the series $_2F_1\;and\;_3F_2$, Integral Transforms Spec. Funct. 22 (2011), no. 11, 823-840. crossref(new window)

17.
R. Vidunas, A generalization of Kummer identity, Rocky Mountain J. Math. 32 (2002), no. 2, 919-936. crossref(new window)

18.
C. Wei, D. Gong, and J. Li, ${\pi}$-Formulas with free parameters, J. Math. Anal. Appl. 396 (2012), no. 2, 880-887. crossref(new window)

19.
W. E. Weisstein, Pi Formulas, MathWorld-A Wolfram Web Resourse, http://mathworld.wolfram.com/PiForm-ulas.html.

20.
D. Zheng, Multisection method and further formulae for ${\pi}$, Indian J. Pure Appl. Math. 139 (2008), no. 2, 137-156.