JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A REMARK ON THE CONJUGATION IN THE STEENROD ALGEBRA
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A REMARK ON THE CONJUGATION IN THE STEENROD ALGEBRA
TURGAY, NESET DENIZ;
  PDF(new window)
 Abstract
We investigate the Hopf algebra conjugation, , of the mod 2 Steenrod algebra, , in terms of the Hopf algebra conjugation, , of the mod 2 Leibniz-Hopf algebra. We also investigate the fixed points of under and their relationship to the invariants under .
 Keywords
Steenrod algebra;Hopf algebra;Leibniz-Hopf algebra;antipode;noncommutative symmetric functions;
 Language
English
 Cited by
 References
1.
D. Arnon, Monomial bases in the Steenrod algebra, J. Pure Appl. Algebra 96 (1994), no. 3, 215-223. crossref(new window)

2.
A. Baker and B. Richter, Quasisymmetric functions from a topological point of view, Math. Scand. 103 (2008), no. 2, 208-242.

3.
M. G. Barratt and H. R. Miller, On the anti-automorphism of the Steenrod algebra, Contemp. Math. 12 (1981), 47-52.

4.
M. D. Crossley, Some Hopf algebras of Words, Glasg. Math. J. 48 (2006), no. 3, 575-582. crossref(new window)

5.
M. D. Crossley and N. D. Turgay, Conjugation invariants in the Leibniz-Hopf Algebra, J. Pure Appl. Algebra 217 (2013), no. 12, 2247-2254. crossref(new window)

6.
M. D. Crossley and N. D. Turgay, Conjugation invariants in the mod 2 dual Leibniz-Hopf algebra, Comm. Algebra 41 (2013), no. 9, 3261-3266. crossref(new window)

7.
M. D. Crossley and S. Whitehouse, On conjugation invariants in the dual Steenrod algebra, Proc. Amer. Math. Soc. 128 (2000), no. 9, 2809-2818. crossref(new window)

8.
D. M. Davis, The anti-automorphism of the Steenrod algebra, Proc. Amer. Math. Soc. 44 (1974), 235-236. crossref(new window)

9.
R. Ehrenborg, On posets and Hopf algebras, Adv. Math. 119 (1996), no. 1, 1-25. crossref(new window)

10.
I. M. Gelfand, D. Krob, A. Lascoux, B. Leclerc, V. S. Retakh, and J. Y. Thibon, Noncommutative symmetric functions, Adv. Math. 112 (1995), no. 2, 218-348. crossref(new window)

11.
V. Giambalvo and H. R. Miller, More on the anti-automorphism of the Steenrod algebra, Algebr. Geom. Topol. 11 (2011), no. 5, 2579-2585. crossref(new window)

12.
M. Hazewinkel, The algebra of quasi-symmetric functions is free over the integers, Adv. Math. 164 (2001), no. 2, 283-300. crossref(new window)

13.
M. Hazewinkel, Symmetric functions, noncommutative symmetric functions, and quasisymmetric functions, Acta Appl. Math. 75 (2003), 55-83. crossref(new window)

14.
S. Kaji, Maple script for conjugation and product in the (dual) Leibniz-Hopf algebra and Steenrod algebra, available at http://www.skaji.org/code.

15.
C. Malvenuto and C. Reutenauer, Duality between quasi-symmetric functions and the Solomon descent algebra, J. Algebra 177 (1995), no. 3, 967-982. crossref(new window)

16.
J. Milnor, The Steenrod algebra and its dual, Ann. of Math. 67 (1958), 150-171. crossref(new window)

17.
J. Silverman, Conjugation and excess in the Steenrod algebra, Proc. Amer. Math. Soc. 119 (1993), no. 2, 657-661. crossref(new window)

18.
N. E. Steenrod, Products of cocycles and extensions of mappings, Ann. of Math. 48 (1947), 290-320. crossref(new window)

19.
N. E. Steenrod and D. B. A. Epstein, Cohomology operations, Ann. of Math. Stud. 50, Princeton Univ. Press, Princeton, 1962.

20.
P. D. Straffin, Identities for conjugation in the Steenrod algebra, Proc. Amer. Math. Soc. 49 (1975), 253-255. crossref(new window)

21.
N. D. Turgay, An alternative approach to the Adem relations in the mod 2 Steenrod algebra, Turkish J. Math. 38 (2014), no. 5, 924-934. crossref(new window)

22.
G. Walker and R. M. W. Wood, The nilpotence height of $Sq^{2n}$, Proc. Amer. Math. Soc. 124 (1996), no. 4, 1291-1295. crossref(new window)

23.
R. M. W. Wood, Problems in the Steenrod algebra, Bull. London Math. Soc. 30 (1998), no. 5, 449-517. crossref(new window)