JOURNAL BROWSE
Search
Advanced SearchSearch Tips
EXTREMAL ATOM-BOND CONNECTIVITY INDEX OF CACTUS GRAPHS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
EXTREMAL ATOM-BOND CONNECTIVITY INDEX OF CACTUS GRAPHS
ASHRAFI, ALI REZA; DEHGHAN-ZADEH, TAYEBEH; HABIBI, NADER;
  PDF(new window)
 Abstract
The atom-bond connectivity index of a graph G (ABC index for short) is defined as the summation of quantities over all edges of G. A cactus graph is a connected graph in which every block is an edge or a cycle. The aim of this paper is to obtain the first and second maximum values of the ABC index among all n vertex cactus graphs.
 Keywords
ABC index;cactus graph;
 Language
English
 Cited by
 References
1.
B. Ben-Moshe, B. Bhattacharya, and Q. Shi, Efficient algorithms for the weighted 2-center problem in a cactus graph, Algorithms and Computation, 16th Int. Symp., ISAAC 2005, Lecture Notes in Computer Science 3827, pp. 693-03, Springer-Verlag, 2005.

2.
J. Chen and X. Guo, Extreme atom-bond connectivity index of graphs, MATCH Commun. Math. Comput. Chem. 65 (2011), no. 3, 713-722.

3.
K. C. Das, Atom-bond connectivity index of graphs, Discrete Appl. Math. 158 (2010), no. 11, 1181-1188. crossref(new window)

4.
K. C. Das, I. Gutman, and B. Furtula, On atom-bond connectivity index, Chem. Phys. Lett. 511 (2011), 452-454. crossref(new window)

5.
T. Dehghan-Zadeh, A. R. Ashrafi, and N. Habibi, Maximum values of atom-bond connectivity index in the class of tetra-cyclic graphs, submitted.

6.
E. El-Mallah and C. Colbourn, The complexity of some edge deletion problems, IEEE Trans. Circuits and Systems 35 (1988), no. 3, 354-362. crossref(new window)

7.
E. Estrada, Atom-bond connectivity and the energetic of branched alkanes, Chem. Phys. Lett. 463 (2008), 422-425. crossref(new window)

8.
E. Estrada, L. Torres, L. Rodriguez, and I. Gutman, An atom-bond connectivity index: modeling the enthalpy of formation of alkanes, Indian J. Chem. 37A (1998), 849-855.

9.
G. H. Fath-Tabar, B. Vaez-Zadeh, A. R. Ashrafi, and A. Graovac, Some inequalities for the atom-bond connectivity index of graph operations, Discrete Appl. Math. 159 (2011), no. 13, 1323-1330. crossref(new window)

10.
B. Furtula, A. Graovac, and D. Vukicevic, Atom-bond connectivity index of trees, Discrete Appl. Math. 157 (2009), no. 13, 2828-2835. crossref(new window)

11.
L. Gan, H. Hou, and B. Liu, Some results on atom-bond connectivity index of graphs, MATCH Commun. Math. Comput. Chem. 66 (2011), no. 2, 669-680.

12.
L. Gan, B. Liu, and Z. You, The ABC index of trees of given degree sequence, MATCH Commun. Math. Comput. Chem. 68 (2012), no. 1, 137-145.

13.
I. Gutman and B. Furtula, Trees with smallest atom-bond connectivity index, MATCH Commun. Math. Comput. Chem. 68 (2012), no. 1, 131-136.

14.
I. Gutman, B. Furtula, and M. Ivanovic, Notes on trees with minimal atom-bond connectivity index, MATCH Commun. Math. Comput. Chem. 67 (2012), no. 2, 467-482.

15.
N. M. Korneyenko, Combinatorial algorithms on a class of graphs, Discrete Appl. Math. 54 (1994), no. 2-3, 215-217. crossref(new window)

16.
M. Lu, L. Zhang, and F. Tian, On the Randic index of cacti, MATCH Commun. Math. Comput. Chem. 56 (2006), no. 3, 551-556.

17.
B. Paten, M. Diekhans, D. Earl, J. St. John, J. Ma, B. Suh, and D. Haussler, Cactus graphs for genome comparisons, J. Comput. Biol. 18 (2011), no. 3, 469-481. crossref(new window)

18.
D. B. West, Introduction to Graph Theory, Prentice Hall, Upper Saddle River, 2001.

19.
R. Xing, B. Zhou, and F. Dong, On atom-bond connectivity index of connected graphs, Discrete Appl. Math. 159 (2011), no. 15, 1617-1630. crossref(new window)

20.
R. Xing, B. Zhou, and Z. Du, Further results on atom-bond connectivity index of trees, Discrete Appl. Math. 158 (2010), no. 14, 1536-1545. crossref(new window)