JOURNAL BROWSE
Search
Advanced SearchSearch Tips
H-V -SUPER MAGIC DECOMPOSITION OF COMPLETE BIPARTITE GRAPHS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
H-V -SUPER MAGIC DECOMPOSITION OF COMPLETE BIPARTITE GRAPHS
KUMAR, SOLOMON STALIN; MARIMUTHU, GURUSAMY THEVAR;
  PDF(new window)
 Abstract
An H-magic labeling in a H-decomposable graph G is a bijection such that for every copy H in the decomposition, is constant. f is said to be H-V -super magic if f(V(G))={1,2,...,p}. In this paper, we prove that complete bipartite graphs are H-V -super magic decomposable where with .
 Keywords
H-decomposable graph;H-V -super magic labeling;complete bipartite graph;
 Language
English
 Cited by
 References
1.
J. Akiyama and M. Kano, Path Factors of a Graph, Graphs and Applications, Wiley, Newyork, 1985.

2.
G. Chartrand and L. Lesniak, Graphs and Digraphs, 3rd Edition, Chapman and Hall, Boca Raton, London, New-York, Washington, D.C., 1996.

3.
G. Chartrand and P. Zhang, Chromatic Graph Theory, Chapman and Hall, CRC, Boca Raton, 2009.

4.
Y. Egawa, M. Urabe, T. Fukuda, and S. Nagoya, A decomposition of complete bipartite graphs into edge-disjoint subgraphs with star components, Discrete Math. 58 (1986), no. 1, 93-95. crossref(new window)

5.
H. Emonoto, Anna S Llado, T. Nakamigawa, and G. Ringel, Super edge-magic graphs, SUT J. Math. 34 (1998), 105-109.

6.
J. A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. 16 (2013), #DS6.

7.
A. Gutierrez and A. Llado, Magic coverings, J. Combin. Math. Combin. Comput. 55 (2005), 43-56.

8.
N. Inayah, A. Llado, and J. Moragas, Magic and antimagic H-decompositions, Discrete Math. 312 (2012), no. 7, 1367-1371. crossref(new window)

9.
T. Kojima, On $C_4$-Supermagic labelings of the Cartesian product of paths and graphs, Discrete Math. 313 (2013), no. 2, 164-173. crossref(new window)

10.
Z. Liang, Cycle-supermagic decompositions of complete multipartite graphs, Discrete Math. 312 (2012), no. 22, 3342-3348. crossref(new window)

11.
A. Llado and J. Moragas, Cycle-magic graphs, Discrete Math. 307 (2007), no. 23, 2925-2933. crossref(new window)

12.
J. A. MacDougall, M. Miller, Slamin, and W. D. Wallis, Vertex-magic total labelings of graphs, Util. Math. 61 (2002), 3-21.

13.
J. A. MacDougall, M. Miller, and K. Sugeng, Super vertex-magic total labeling of graphs, Proc. 15th AWOCA (2004), 222-229.

14.
G. Marimuthu and M. Balakrishnan, E-super vertex magic labelings of graphs, Discrete Appl. Math. 160 (2012), no. 12, 1766-1774. crossref(new window)

15.
G. Marimuthu and M. Balakrishnan, Super edge magic graceful graphs, Inform. Sci. 287 (2014), 140-151. crossref(new window)

16.
A. M. Marr and W. D. Wallis, Magic Graphs, 2nd edition, Birkhauser, Boston, Basel, Berlin, 2013.

17.
T. K. Maryati, A. N. M. Salman, E. T. Baskoro, J. Ryan, and M. Miller, On H-Supermagic labeling for certain shackles and amalgamations of a connected graph, Util. Math. 83 (2010), 333-342.

18.
A. A. G. Ngurah, A. N. M. Salman, and L. Susilowati, H-Supermagic labeling of graphs, Discrete Math. 310 (2010), no. 8, 1293-1300. crossref(new window)

19.
M. Roswitha and E. T. Baskoro, H-Magic covering on some classes of graphs, AIP Conf. Proc. 1450 (2012), 135-138.

20.
J. Sedlacek, Problem 27, Theory of Graphs and its Applications, 163-167, Proceedings of Symposium Smolenice, 1963.

21.
K. A. Sugeng and W. Xie, Construction of Super edge magic total graphs, Proc. 16th AWOCA (2005), 303-310.

22.
T.-M. Wang and G.-H. Zhang, Note on E-super vertex magic graphs, Discrete Appl. Math. 178 (2014), 160-162. crossref(new window)