JOURNAL BROWSE
Search
Advanced SearchSearch Tips
OPTIMALITY CONDITIONS FOR OPTIMAL CONTROL GOVERNED BY BELOUSOV-ZHABOTINSKII REACTION MODEL
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
OPTIMALITY CONDITIONS FOR OPTIMAL CONTROL GOVERNED BY BELOUSOV-ZHABOTINSKII REACTION MODEL
RYU, SANG-UK;
  PDF(new window)
 Abstract
This paper is concerned with the optimality conditions for optimal control problem of Belousov-Zhabotinskii reaction model. That is, we obtain the optimality conditions by showing the differentiability of the solution with respect to the control. We also show the uniqueness of the optimal control.
 Keywords
Belousov-Zhabotinskii reaction model;optimality conditions;uniqueness;
 Language
English
 Cited by
1.
OPTIMAL CONTROL FOR SOME REACTION DIFFUSION MODEL, East Asian mathematical journal, 2016, 32, 3, 387  crossref(new windwow)
 References
1.
H. Brezis, Analyse Fonctionnelle, Masson, Paris, 1983.

2.
M. R. Garvie and C. Trenchea, Optimal control of a nutrient-phytoplankton-zooplankton-fish system, SIAM J. Control Optim. 46 (2007), no. 3, 775-791. crossref(new window)

3.
K. H. Hoffman and L. Jiang, Optimal control of a phase field model for solidification, Numer. Funct. Anal. Optimiz. 13 (1992), no. 1-2, 11-27. crossref(new window)

4.
J. P. Keener and J. J. Tyson, Spiral waves in the Belousov-Zhabotinskii reaction, Phys. D 21 (1986), no. 2-3, 307-324. crossref(new window)

5.
G. Nicolis and I. Prigogine, Self-Organization in Nonequilibrium system From Dissipative Structure to Order through Fluctuations, John Wiley and Sons, New York, 1977.

6.
S.-U. Ryu, Necessary conditions for optimal boundary control problem governed by some chemotaxis equations, East Asian Math. J. 29 (2013), no. 5, 491-501. crossref(new window)

7.
S.-U. Ryu, Optimal control for Belousov-Zhabotinskii reaction model, East Asian Math. J. 31 (2015), no. 1, 109-117. crossref(new window)

8.
S.-U. Ryu and A. Yagi, Optimal control of Keller-Segel equations, J. Math. Anal. Appl. 256 (2001), no. 1, 45-66. crossref(new window)

9.
V. K. Vanag and I. R. Epstein, Design and control of patterns in reaction-diffusion systems, Chaos 18 (2008), 026107. crossref(new window)

10.
A. Yagi, Abstract Parabolic Evolution Equations and Their Applications, Springer-Verlag, Berlin, 2010.

11.
A. Yagi, K. Osaki, and T. Sakurai, Exponential attractors for Belousov-Zhabotinskii reaction model, Discrete Contin. Dyn. Syst. Suppl (2009), 846-856.

12.
V. S. Zykov, G. Bordiougov, H. Brandtstadter, I. Gerdes, and H. Engel, Golbal control of spiral wave dynamics in an excitable domain of circular and elliptical shape, Phys. Rev. Lett. 92 (2004), 018304. crossref(new window)