JOURNAL BROWSE
Search
Advanced SearchSearch Tips
STABILITY OF (α, β, γ)-DERIVATIONS ON LIE C*-ALGEBRA ASSOCIATED TO A PEXIDERIZED QUADRATIC TYPE FUNCTIONAL EQUATION
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
STABILITY OF (α, β, γ)-DERIVATIONS ON LIE C*-ALGEBRA ASSOCIATED TO A PEXIDERIZED QUADRATIC TYPE FUNCTIONAL EQUATION
Eghbali, Nasrin; Hazrati, Somayeh;
  PDF(new window)
 Abstract
In this article, we considered the stability of the following (, , )-derivation
 Keywords
()-derivation;Lie -algebra;quadratic functional equation;
 Language
English
 Cited by
 References
1.
B. Bouikhalene, E. Elqorachi, and Th. M. Rassias, On the generalized Hyers-Ulam stability of the quadratic functional equation with a general involution, Nonlinear Funct. Anal. Appl. 12 (2007), no. 2, 247-262.

2.
B. Bouikhalene, E. Elqorachi, and Th. M. Rassias, On the Hyers-Ulam stability of approximately Pexider mappings, Math. Inequal. Appl. 11 (2008), no. 4, 805-818.

3.
P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), no. 1-2, 76-68. crossref(new window)

4.
Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg. 62 (1992), 59-64. crossref(new window)

5.
E. Elqorachi, Y. Manar, and Th. M. Rassias, Hyers-Ulam stability of quadratic functional equation, Int. J. Nonlinear Anal. Appl. 1 (2010), no. 2, 26-35.

6.
Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci. 14 (1991), no. 3, 431-434. crossref(new window)

7.
P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), no. 3, 431-436. crossref(new window)

8.
D. H. Hyers and Th. M. Rassias, Approximate homomorphisms, Aequationes Math. 44 (1992), no. 2-3, 125-153. crossref(new window)

9.
S. M. Jung, On the Hyers-Ulam stability of the functional equations that have the quadratic property, J. Math. Anal. Appl. 222 (1998), no. 1, 126-137. crossref(new window)

10.
S. M. Jung, Stability of the quadratic equation of Pexider type, Abh. Math. Sem. Univ. Hamburg 70 (2000), 175-190. crossref(new window)

11.
J. R. Lee, J. S. An, and C. Park, On the stability of quadratic functional equations, Abs. Appl. Anal. doi: 10.1155/2008/628178. crossref(new window)

12.
Th. M. Rassias, On a modified Hyers-Ulam sequence, J. Math. Anal. Appl. 158 (1991), no. 1, 106-113. crossref(new window)

13.
Th. M. Rassias and J. Tabor, Stability of Mappings of Hyers-Ulam Type, Hardronic Press, Inc., Palm Harbor, Florida, 1994.

14.
F. Skof, Approximation of ${\delta}$-quadratic functions on a restricted domain, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 118 (1984), no. 1-2, 58-70.

15.
H. Stetkaer, Functional equations on abelian groups with involution, Aequationes Math. 54 (1997), no. 1-2, 144-172. crossref(new window)

16.
S. M. Ulam, A Collection of the Mathematical Problems, New York: Interscience Publ, 1940.