JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON THEIL'S METHOD IN FUZZY LINEAR REGRESSION MODELS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON THEIL'S METHOD IN FUZZY LINEAR REGRESSION MODELS
Choi, Seung Hoe; Jung, Hye-Young; Lee, Woo-Joo; Yoon, Jin Hee;
  PDF(new window)
 Abstract
Regression analysis is an analyzing method of regression model to explain the statistical relationship between explanatory variable and response variables. This paper propose a fuzzy regression analysis applying Theils method which is not sensitive to outliers. This method use medians of rate of increment based on randomly chosen pairs of each components of -level sets of fuzzy data in order to estimate the coefficients of fuzzy regression model. An example and two simulation results are given to show fuzzy Theils estimator is more robust than the fuzzy least squares estimator.
 Keywords
fuzzy regression model;Theil's method;fuzzy outlier;
 Language
English
 Cited by
 References
1.
L. H. Chen and C. C. Hsueh, Fuzzy regression models using the least-squares method based on the concept of distance, IEEE Transactions on Fuzzy Systems 17 (2009), 1259-1272. crossref(new window)

2.
S. H. Choi and J. J. Buckley, Fuzzy regression using least absolute deviation estimators, Soft Computing 12 (2008), 257-263.

3.
S. H. Choi and J. H. Yoon, General fuzzy regression using least squares method, Int. J. Sys. Sci. 41 (2010), 477-485. crossref(new window)

4.
P. Diamond, Fuzzy least squares, Inform. Sci. 46 (1988), no. 3, 141-157. crossref(new window)

5.
P. Diamond and H. Tanaka, Fuzzy regression analysis, Fuzzy sets in decision analysis, operations research and statistics, 349-387, Handb. Fuzzy Sets Ser., 1, Kluwer Acad. Publ., Boston, MA, 1998.

6.
S. S. Hussain and P. Sprent, Nonparametric regression, J. Roy. Statist. Soc. 146 (1983), no. 2, 182-191. crossref(new window)

7.
C. Kao and C. Chyu, Least-squares estimates in fuzzy regression analysis, European J. Oper. Ress 148 (2003), no. 2, 426-435. crossref(new window)

8.
B. Kim and R. R. Bishu, Evaluation of fuzzy linear regression models by comparing membership functions, Fuzzy Sets and Systems 100 (1998), 343-352. crossref(new window)

9.
H. K. Kim, J. H. Yoon, and Y. Li, Asymptotic properties of least squares estimation with fuzzy observations, Inform. Sci. 178 (2008), 439-451. crossref(new window)

10.
J. H. Yoon and S. H. Choi, Componentwise fuzzy linear regression using least squares estimation, J. Muli.-Valued Logic 15 (2009), 137-153.

11.
J. H. Yoon and S. H. Choi, Fuzzy least squares estimation with new fuzzy operations, Advances in Intelligent Systems and Computing 190 (2013), 193-202. crossref(new window)

12.
J. H. Yoon, S. H. Choi, and H. K. Kim, Asymptotic consistency of least squares estimators in fuzzy regression model, Commun. Korean Statis. Soc. 11 (2008), 799-813.

13.
J. H. Yoon, W. J. Lee, and S. H. Choi, Fuzzy Theil regression model, J. Korean Instit. Intelligent Systems 23 (2013), 336-340.

14.
D. Savic and W. Pedryzc, Evaluation of fuzzy linear regression models, Fuzzy Sets and Systems 39 (1991), no. 1, 51-63. crossref(new window)

15.
H. Tanaka, I. Hayashi, and J. Watada, Possibilistic linear regression analysis for fuzzy data, European J. Oper. Res. 40 (1989), no. 3, 389-396. crossref(new window)

16.
H. Tanaka, S. Uejima, and K. Asai, Linear regression analysis with fuzzy model, IEEE Trans. Syst. Man Cybernet. 12 (1982), 903-907. crossref(new window)

17.
H. Theil, A rank invariant method of linear and polynomial regression analysis. I, Pro. Kon. Ned. Akad. Wetensch. A 53 (1950), 386-392.

18.
L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338-353. crossref(new window)

19.
L. A. Zadeh, The concept of linguistic variable and its application to approximate reasoning I, Inform. Sci. 8 (1975), 199-249. crossref(new window)