JOURNAL BROWSE
Search
Advanced SearchSearch Tips
REFINED ARITHMETIC-GEOMETRIC MEAN INEQUALITY AND NEW ENTROPY UPPER BOUND
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
REFINED ARITHMETIC-GEOMETRIC MEAN INEQUALITY AND NEW ENTROPY UPPER BOUND
Adiyasuren, Vandanjav; Batbold, Tserendorj; Khan, Muhammad Adil;
  PDF(new window)
 Abstract
In this paper, we establish a new refinement of the arithmetic-geometric mean inequality. Applying this result in information theory, we obtain a more precise upper bound for Shannon`s entropy.
 Keywords
arithmetic-geometric mean inequality;entropy;Jensen`s inequality;
 Language
English
 Cited by
 References
1.
S. S. Dragomir and C. J. Goh, A counterpart of Jensen's discrete inequality for differentiable convex mappings and applications in information theory, Math. Comput. Modelling 24 (1996), no. 2, 1-11.

2.
S. S. Dragomir and C. J. Goh, Some bounds on entropy measures in information theory, Appl. Math. Lett. 10 (1997), no. 3, 23-28.

3.
P. R. Mercer, Refined arithmetic, geometric and harmonic mean inequalities, Rocky Mountain J. Math. 33 (2003), no. 4, 1459-1464. crossref(new window)

4.
O. Parkash and P. Kakkar, Entropy bounds using arithmetic-geometric-harmonic mean inequality, Int. J. Pure Appl. Math. 89 (2013), no. 5, 719-730.

5.
S. Simic, Best possible global bounds for Jensen's inequality, Appl. Math. Comput. 215 (2009), no. 6, 2224-2228.

6.
S. Simic, Jensen's inequality and new entropy bounds, Appl. Math. Lett. 22 (2009), no. 8, 1262-1265. crossref(new window)

7.
N. Tapus and P. G. Popescu, A new entropy upper bound, Appl. Math. Lett. 25 (2012), no. 11, 1887-1890. crossref(new window)

8.
J. Tian, New property of a generalized Holder's inequality and its applications, Inform. Sci. 288 (2014), 45-54. crossref(new window)