JOURNAL BROWSE
Search
Advanced SearchSearch Tips
QUANTUM GRAPH OF SIERPINSKI GASKET TYPE IN ELECTRIC FIELD
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
QUANTUM GRAPH OF SIERPINSKI GASKET TYPE IN ELECTRIC FIELD
Blinova, Irina V.; Popov, Igor Y.;
  PDF(new window)
 Abstract
Quantum graph of Sierpinski gasket type with attached leads in an electric eld is considered. We study the dependence of the transmission coecient via the wave number of the quantum particle. It has strongly resonance character. The in uence of the amplitude and the orientation of the electric eld on the coecient is investigated.
 Keywords
quantum graph;Sierpinski gasket;transmission;
 Language
English
 Cited by
 References
1.
O. Ben-Bassat, R. S. Strichartz, and A. Teplyaev, What is not in the domain of the Laplacian on Sierpinski gasket type fractals, J. Funct. Anal. 166 (1999), no. 2, 197-217. crossref(new window)

2.
I. V. Blinova, I. Yu. Popov, and M. M. Sandler, Quantum graph of Sierpinski gasket type: computational experiment, Russ. J. Math. Phys. 14 (2007), no. 4, 338-396.

3.
A. N. Bondarenko and V. A. Dedok, Spectral surgery of quantum graphs, Sib. Xh. Ind. Mat. 7 (2004), no. 4, 16-28.

4.
P. Exner, Leaky quantum graphs: a review, Analysis on graphs and its applications, 523-564, Proc. Sympos. Pure Math., 77, Amer. Math. Soc., Providence, RI, 2008.

5.
Y. Higuchi and T. Shirai, The spectrum of magnetic Schrodinger operators on a graph with periodic structure, J. Funct. Anal. 169 (1999), no. 2, 456-480. crossref(new window)

6.
J. Kigami, A harmonic calculus on the Sierpinski spaces, Japan J. Indust. Appl. Math. 6 (1989), no. 2, 259-290.

7.
J. Kigami, Harmonic calculus on p.c.f. self-similar sets, Trans. Amer. Math. Soc. 335 (1993), no. 2, 721-755.

8.
J. Kigami, Analysis on Fractals, Cambridge, Cambridge University Press. 2001.

9.
A. Kusuoka, A diffusion process on a fractal, Probabilistic methods in mathematical physics (Katata/Kyoto, 1985), 251-274, Academic Press, Boston, MA, 1987.

10.
L. D. Landau and E. M. Lifshits, Quantum Mechanics (non-relativistic theory), 4th Ed. Moscow, Nauka, 1989.

11.
I. S. Lobanov and I. Yu. Popov, Scattering by a junction of zig-zag and armchair nanotubes, Nanosystems: Physics, Chemistry, Mathematics 3 (2012), no. 2, 6-28.

12.
B. B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman and Company; 1st edition, 1982.

13.
I. Yu. Popov and S. L. Popova, On the mesoscopic gate, Acta Phys. Polonica A. 88 (1995), no. 6, 1113-1117. crossref(new window)

14.
G. Tanner, The autocorrelation function for spectral determinants of quantum graphs, J. Phys. A 35 (2002), no. 29, 5985-5995. crossref(new window)

15.
A. Teplyaev, Spectral Analysis on In nite Sierpinski Gaskets, J. Funct. Anal. 159 (1998), no. 2, 537-567. crossref(new window)