SOME INTEGRAL TRANSFORMS AND FRACTIONAL INTEGRAL FORMULAS FOR THE EXTENDED HYPERGEOMETRIC FUNCTIONS

- Journal title : Communications of the Korean Mathematical Society
- Volume 31, Issue 3, 2016, pp.591-601
- Publisher : The Korean Mathematical Society
- DOI : 10.4134/CKMS.c150213

Title & Authors

SOME INTEGRAL TRANSFORMS AND FRACTIONAL INTEGRAL FORMULAS FOR THE EXTENDED HYPERGEOMETRIC FUNCTIONS

Agarwal, Praveen; Choi, Junesang; Kachhia, Krunal B.; Prajapati, Jyotindra C.; Zhou, Hui;

Agarwal, Praveen; Choi, Junesang; Kachhia, Krunal B.; Prajapati, Jyotindra C.; Zhou, Hui;

Abstract

Integral transforms and fractional integral formulas involving well-known special functions are interesting in themselves and play important roles in their diverse applications. A large number of integral transforms and fractional integral formulas have been established by many authors. In this paper, we aim at establishing some (presumably) new integral transforms and fractional integral formulas for the generalized hypergeometric type function which has recently been introduced by Luo et al. [9]. Some interesting special cases of our main results are also considered.

Keywords

gamma function;beta function;extended beta function;generalized hypergeometric functions;extended generalized hypergeometric functions;decomposition formula;integral transforms;fractional integral operators;

Language

English

References

1.

P. Agarwal, Further results on fractional calculus of Saigo operators, Appl. Appl. Math. 7 (2012), no. 2, 585-594.

2.

P. Agarwal, Certain properties of the generalized Gauss hypergeometric functions, Appl. Math. Inf. Sci. 8 (2014), no. 5, 2315-2320.

3.

P. Agarwal and S. Jain, Further results on fractional calculus of Srivastava polynomials, Bull. Math. Anal. Appl. 3 (2011), no. 2, 167-174.

4.

M. A. Chaudhary, A. Qadir, M. Rafique, and S. M. Zubair, Extension of Euler's beta function, Appl. Math. Comput. 159 (2004), no. 2, 589-602.

5.

M. A. Chaudhary, A. Qadir, H. M. Srivastava, and R. B. Paris, Extended hypergeometric and confluent hypergeometric functions, J. Comput. Appl. Math. 78 (1997), no. 1, 19-32.

6.

J. Choi and P. Agarwal, Certain Integral transform and fractional integral formulas for the generalized Gauss hypergeometric functions, Abstr. Appl. Anal. 2014 (2014), Article ID 735946, 7 pages.

7.

A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematical Studies, Elsevier Science, Amsterdem, The Netherlands, 2006.

8.

D. M. Lee, A. K. Rathie, R. K. Parmar, and Y. S. Kim, Genearlization of extended beta function, hypergeometric and confluent hypergeometric functions, Honam Math. J. 33 (2011), no. 2, 187-206.

9.

M. J. Luo, G. V. Milovanovic, and P. Agarwal, Some results on the extended beta and extended hypergeometric functions, Appl. Math. Comput. 248 (2014), 631-651.

10.

A. M. Mathai and R. K. Saxena, Genearlized Hypergeometric Functions with Applications in Statistics and Physical Sciences, Springer-Verlag, Lecture Notes Series No. 348, Heidelberg, 1973.

11.

A. M. Mathai, R. K. Saxena, and H. J. Haubold, The H-Function Theory and Applications, Springer-Verlag New York, 2010.

12.

E. Ozergin, M. A. Ozarslan, and A. ALtin, Extension of gamma, beta and hypergeometric functions, J. Comput. Appl. Math. 235 (2011), no. 16, 4601-4610.

13.

T. Pohlen, The Hadamard Product and Universal Power Series, Dissertation, Universit at Trier, 2009.

14.

I. N. Sneddon, The Use of Integral Transform, Tata McGraw-Hill, New Delhi, India, 1979.

15.

H. M. Srivastava and P. Agarwal, Certain fractional integral operators and the generalized incomplete hypergeometric functions, Appl. Appl. Math. 8 (2013), no. 2, 333-345.

16.

H. M. Srivastava, P. Agarwal, and S. Jain, Generating functions for the generalized Gauss hypergeometric functions, Appl. Math. Comput. 247 (2014), 348-352.

17.

H. M. Srivastava and J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science, Amsterdam, The Netherlands, 2012.