JOURNAL BROWSE
Search
Advanced SearchSearch Tips
LIGHTLIKE HYPERSURFACES OF AN INDEFINITE GENERALIZED SASAKIAN SPACE FORM WITH A SYMMETRIC METRIC CONNECTION OF TYPE (ℓ, m)
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
LIGHTLIKE HYPERSURFACES OF AN INDEFINITE GENERALIZED SASAKIAN SPACE FORM WITH A SYMMETRIC METRIC CONNECTION OF TYPE (ℓ, m)
Jin, Dae Ho;
  PDF(new window)
 Abstract
We define a new connection on a semi-Riemannian manifold. Its notion contains two well known notions; (1) semi-symmetric connection and (2) quarter-symmetric connection. In this paper, we study the geometry of lightlike hypersurfaces of an indefinite generalized Sasakian space form with a symmetric metric connection of type (, m).
 Keywords
symmetric connection of type (, m);metric connection;lightlike hypersurface;
 Language
English
 Cited by
 References
1.
P. Alegre, D. E. Blair, and A. Carriazo, Generalized Sasakian space form, Israel J. Math. 141 (2004), 157-183. crossref(new window)

2.
C. Atindogbe and K. L. Duggal, Conformal screen on lightlike hypersurfaces, Int. J. Pure Appl. Math. 11 (2004), no. 4, 421-442.

3.
C. Calin, Contributions to geometry of CR-submanifold, Thesis, University of Iasi, Romania, 1998.

4.
K. L. Duggal and A. Bejancu, Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Kluwer Acad. Publishers, Dordrecht, 1996.

5.
K. L. Duggal and D. H. Jin, Null curves and Hypersurfaces of Semi-Riemannian Manifolds, World Scientific, 2007.

6.
K. L. Duggal and B. Sahin, Differential geometry of lightlike submanifolds, Frontiers in Mathematics, Birkhauser, 2010.

7.
S. Golab, On semi-symmetric and quarter-symmetric linear connections, Tensor (N.S.) 29 (1975), no. 3, 249-254.

8.
H. A. Hayden, Subspace of a space with torsion, Proc. London Math. Soc. 34 (1932), 27-50.

9.
D. H. Jin, Geometry of lightlike hypersurfaces of an indefinite Sasakian manifold, Indian J. Pure Appl. Math. 41 (2010), no. 4, 569-581. crossref(new window)

10.
D. H. Jin, Half lightlike submanifold of an indefinite generalized Sasakian space form with a quarter-symmetric metric connection, Internat. Math. Forum 10 (2015), no. 3, 127-142. crossref(new window)

11.
D. Kamilya and U. C. De, Some properties of a Ricci quarter-symmetric metric connection in a Riemannian manifold, Indian J. Pure Appl. Math. 26 (1995), no. 1, 29-34.

12.
R. S. Mishra and S. N. Pandey, On quarter symmetric metric F-connections, Tensor (N.S.) 34 (1980), no. 1, 1-7.

13.
J. Nikic and N. Pusic, A remakable class of natural metric quarter-symmetric connection on a hyperbolic Kaehler space, Conference "Applied Differential Geometry: General Relativity"-Workshop "Global Analysis, Differential Geometry, Lie Algebras", 96-101, BSG Proc., 11, Geom. Balkan Press, Bucharest, 2004.

14.
J. A. Oubina, New classes of almost contact metric structures, Publ. Math. Debrecen 32 (1985), no. 3-4, 187-193.

15.
N. Pusic, On quarter-symmetric metric connections on a hyperbolic Kaehlerian space, Publ. Inst. Math. (Beograd) (N.S.) 73(87) (2003), 73-80. crossref(new window)

16.
S. C. Rastogi, On quarter-symmetric metric connections, C. R. Acad Sci. Bulgare Sci. 31 (1978), no. 7, 811-814.

17.
S. C. Rastogi, On quarter-symmetric metric connections, Tensor (N.S.) 44 (1987), no. 2, 133-141.

18.
K. Yano, On semi-symmetric metric connections, Rev. Roumaine Math. Pures Appl. 15 (1970), 1579-1586.

19.
K. Yano and T. Imai, Quarter-symmetric metric connection and their curvature tensors, Tensor (N.S.) 38 (1982), 13-18.