Advanced SearchSearch Tips
Time Resolved Analysis of Water Soluble Organic Carbon by Aerosol-into-Mist System
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Time Resolved Analysis of Water Soluble Organic Carbon by Aerosol-into-Mist System
Cho, In-Hwan; Park, Da-Jeong; Bae, Min-Suk;
  PDF(new window)
Real-time and quantitative measurement of the chemical composition in ambient aerosols represents one of the most challenging problems in the field of atmospheric chemistry. In the present study, time resolved application by Aerosol-into-Mist System (AIMS) following by total organic carbon analyzer (TOC) has been developed. The unique aspect of the combination of these two techniques is to provide quantifiable water soluble organic carbon (WSOC) information of particle-phase organic compounds on timescales of minutes. We also demonstrated that the application of the AIMS method is not limited to water-soluble organic carbon but inorganic ion compounds. By correlating the volume concentrations by optical particle sizer (OPS), water soluble organic carbon can be highly related to the secondary organic products. AIMS-TOC method can be potentially applied to probe the formation and evolution mechanism of a variety of SOA behaviors in ambient air.
Water soluble organic carbon;Organic carbon;Optical particle sizer;
 Cited by
입경 분포 원인 분석 및 PM2.5 밀도 추정 -Part II,배민석;박다정;이정훈;안준영;이영재;

한국대기환경학회지, 2016. vol.32. 2, pp.158-166 crossref(new window)
PILS-TOC를 이용한 실시간 대기 중 수용성 유기탄소 비교 측정,박다정;강석원;이태형;신혜정;손장호;배민석;

한국대기환경학회지, 2016. vol.32. 6, pp.633-641 crossref(new window)
-Part II, Journal of Korean Society for Atmospheric Environment, 2016, 32, 2, 158  crossref(new windwow)
Comparison of Real Time Water Soluble Organic Carbon Measurements by Two PILS-TOC Analyzers, Journal of Korean Society for Atmospheric Environment, 2016, 32, 6, 633  crossref(new windwow)
Bae, M., J. Schauer, J. DeMinter, J. Turner, D. Smith, and R. Cary (2004) Validation of a Semi-Continuous Instrument for Elemental Carbon and Organic Carbon Using a Thermal-Optical Method, Atmos. Environ., 38, 2885-2893. crossref(new window)

Bae, M.S., J. Schwab, Q. Zhang, O. Hogrefe, K. Demerjian, S. Weimer, K. Rhoads, D. Orsini, P. Venkatachari, and P. Hopke (2007) Interference of organic signals in highly time resolved nitrate measurements by low mass resolution aerosol mass spectrometry, J. Geophys. Res., 112, D22305. crossref(new window)

Chan, M., J. Surratt, A. Chan, K. Schilling, J. Offenberg, M. Lewandowski, E. Edney, T. Kleindienst, M. Jaoui, E. Edgerton, R. Tanner, S. Shaw, M. Zheng, E. Knipping, and J. Seinfeld (2011) Influence of aerosol acidity on the chemical composition of secondary organic aerosol from beta-caryophyllene, Atmos. Chem. Phys., 11, 1735-1751. crossref(new window)

Cheng, Y., K.B. He, F.K. Duan, M. Zheng, Y.L. Ma, and J.H. Tan (2009) Positive sampling artifact of carbonaceous aerosols and its influence on the thermal-optical split of OC/EC, Atmos. Chem. Phys., 9, 7243-7256. crossref(new window)

Clark, C., S. Nakao, A. Asa-Awuku, K. Sato, and D. Cocker (2013) Real-time study of particle-phase products from alpha-pinene ozonolysis and isoprene photooxidation using particle into liquid sampling directly coupled to a time-of-flight mass spectrometer (PILSToF), Aerosol Sci. Tech., 47, 1374-1382. crossref(new window)

Draxler, R.R. and G.D. Rolph (2015) HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website ( NOAA Air Resources Laboratory, College Park, MD.

Dye, C. and K. Yttri (2005) Determination of monosaccharide anhydrides in atmospheric aerosols by use of high-performance liquid chromatography combined with high-resolution mass spectrometry, Anal. Chem., 77(6), 1853-1858. crossref(new window)

Fahnestock, K., L. Yee, C. Loza, M. Coggon, R. Schwantes, X. Zhang, N. Dalleska, and J. Seinfeld (2014) Secondary organic aerosol composition from C12 alkanes, J. Phys. Chem. A., 119 (19), 4281-4297.

Gelencser, A., A. Hoffer, Z. Krivacsy, G. Kiss, A. Molnar, and E. Meszaros (2002) On the possible origin of humic matter in fine continental aerosol, J. Geophys. Res. Atmos., 107(D12).

Isaacman, G., K. Wilson, A. Chan, D. Worton, J. Kimmel, T. Nah, T. Hohaus, M. Gonin, J. Kroll, D. Worsnop, and A. Goldstein (2012) Improved resolution of hydrocarbon structures and constitutional isomers in complex mixtures using gas chromatographyvacuum ultraviolet-mass spectrometry, Anal. Chem., 84(5), 2335-2342. crossref(new window)

Jimenez, J., J. Jayne, O. Shi, C. Kolb, D. Worsnop, I. Yourshaw, J. Seinfeld, R. Flagan, X. Zhang, K. Smith, J. Morris, and P. Davidovits (2003) Ambient aerosol sampling using the aerodyne aerosol mass spectrometer, J. Geophys. Res. Atmos., 108(D7).

Lavrich, R. and M. Hays (2007) Validation studies of thermal extraction-GC/MS applied to source emissions aerosols. 1. Semivolatile analyte-nonvolatile matrix interactions, Anal. Chem., 79(10), 3635-3645. crossref(new window)

Lin, Y., Z. Zhang, K. Docherty, H. Zhang, S. Budisulistiorini, C. Rubitschun, S. Shaw, E. Knipping, E. Edgerton, T. Kleindienst, A. Gold, and J. Surratt (2012) Isoprene epoxydiols as precursors to secondary organic aerosol formation: acid-catalyzed reactive uptake studies with authentic compounds, Environ. Sci. Technol., 46(1), 250-258. crossref(new window)

Park, D.J., I.H. Cho, and M.S. Bae (2015) Determination of Amino Acids on Wintertime $PM_{2.5}$ using HPLC-FLD, J. Korean Soc. Atmos. Environ., 31(5), 482-492. (in Korean with English Abstract).

Park, D.J., J.Y. Ahn, H.J. Shin, and M.S. Bae (2014) Characteristics of $PM_{2.5}$ Carbonaceous Aerosol using PILS-TOC and GC/MS-TD in Seoul, J. Korean Soc. Atmos. Environ., 30(5), 461-476. (in Korean with English Abstract) crossref(new window)

Parshintsev, J., M. Kivilompolo, J. Ruiz-Jimenez, K. Hartonen, M. Kulmala, and M. Riekkola (2010) Particle-into-Liquid Sampler on-line coupled with solidphase extraction-liquid chromatography-mass spectrometry for the determination of organic acids in atmospheric aerosols, J. Chromatogr. A., 1217(33), 5427-5433. crossref(new window)

Simpson, C., M. Paulsen, R. Dills, L. Liu, and D. Kalman (2005) Determination of methoxyphenols in ambient atmospheric particulate matter: tracers for wood combustion, Environ. Sci. Technol., 39(2), 631-637. crossref(new window)

Sullivan, A., R. Peltier, C. Brock, J. de Gouw, J. Holloway, C. Warneke, A. Wollny, and R. Weber (2006) Airborne measurements of carbonaceous aerosol soluble in water over northeastern United States: method development and an investigation into water-soluble organic carbon sources, J. Geophys. Res. Atmos., 111(D23).

Surratt, J., A. Chan, N. Eddingsaas, M. Chan, C. Loza, A. Kwan, S. Hersey, R. Flagan, P. Wennberg, and J. Seinfeld (2010) Reactive intermediates revealed in secondary organic aerosol formation from isoprene, P. Natl. Acad. Sci. USA., 107(15), 6640-6645. crossref(new window)

Weber, R., D. Orsini, Y. Daun, Y.N. Lee, P. Klotz, and F. Brechtel (2001) A particle-intoliquid collector for rapid measurement of aerosol bulk chemical composition, Aerosol. Sci. Tech., 35(3), 718-727. crossref(new window)

Zahardis, J., B. LaFranchi, and G. Petrucci (2006) The heterogeneous reaction of particle-phase methyl esters and ozone elucidated by photoelectron resonance capture ionization: direct products of ozonolysis and secondary reactions leading to the formation of ketones, Int. J. Mass Spectrom., 253, 38-47. crossref(new window)