Advanced SearchSearch Tips
Review of Recent Smog Chamber Studies for Secondary Organic Aerosol
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Review of Recent Smog Chamber Studies for Secondary Organic Aerosol
Lim, Yong Bin; Lee, Seung-Bok; Kim, Hwajin; Kim, Jin Young; Bae, Gwi-Nam;
  PDF(new window)
A smog chamber has been an effective tool to study air quality, particularly secondary organic aerosol (SOA), which is typically formed by atmospheric oxidation of volatile organic compounds (VOCs). In controlled environments, smog chamber studies have validated atmospheric oxidation by identifying, quantifying and monitoring products with state-of-art instruments (e.g., aerosol mass spectrometer, scanning mobility particle sizer) and provided chemical insights of SOA formation by elucidating reaction mechanisms. This paper reviews types of smog chambers and the current state of smog chamber studies that have accomplished to find pathways of SOA formation, focusing on gas-particle partitioning of semivolatile products of VOC oxidation, heterogeneous reactions on aerosol surface, and aqueous chemistry in aerosol waters (e.g., cloud/fog droplets and wet aerosols). For future chamber studies, then, this paper discusses potential formation pathways of fine particles that East Asia countries (e.g., Korea and China) currently suffer from due to massive formation that gives rise to fatal health problems.
Smog chamber;Secondary organic aerosols;Volatile organic compounds;Aqueous chemistry;
 Cited by
Filtration Characteristics of Paticulate Matter at Bag Filters Coated with PTFE Membrane During Off-Line Pulsing, Journal of Korean Society Environmental Engineers, 2017, 39, 7, 391  crossref(new windwow)
Aiken, A.C., P.F. Decarlo, J.H. Kroll, D.R. Worsnop, J.A. Huffman, K.S. Docherty, I.M. Ulbrich, C. Mohr, J.R. Kimmel, D. Sueper, Y. Sun, Q. Zhang, A. Trimborn, M. Northway, P.J. Ziemann, M.R. Canagaratna, T.B. Onasch, M.R. Alfarra, A.S.H. Prevot, J. Dommen, J. Duplissy, A. Metzger, U. Baltensperger, and J.L. Jimenez (2008) O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with high-resolution time-of-flight aerosol mass spectrometry, Environ. Sci. Technol., 42, 4478-4485. crossref(new window)

Akimoto, H., M. Hoshino, G. Inoue, F. Sakamaki, N. Washida, and M. Okuda (1979) Design and characterization of the evacuable and bakable photochemical smog chamber, Environ. Sci. Technol., 13, 471-475. crossref(new window)

Arey, J., S.M. Aschmann, E.S.C. Kwok, and R. Atkinson (2001) Alkyl nitrate, hydroxyalkyl nitrate, and hydroxycarbonyl formation from the $NO_x$-air photooxidations of $C_5-C_8$ n-alkanes, J. Phys. Chem. A, 105, 1020-1027. crossref(new window)

Atkinson, R. (2007) Rate constants for the atmospheric reactions of alkoxy radicals: An updated estimation method, Atmos. Environ., 41, 8468-8485. crossref(new window)

Atkinson, R. and J. Arey (2003) Atmospheric degradation of volatile organic compounds, Chem. Rev., 103, 4605-4638. crossref(new window)

Atkinson, R., D.L. Baulch, R.A. Cox, J.N. Crowley, R.F. Hampson, R.G. Hynes, M.E. Jenkin, M.J. Rossi, and J. Troe (2006) Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II - gas phase reactions of organic species, Atmos. Chem. Phys., 6, 3625-4055. crossref(new window)

Badali, K.M., S. Zhou, D. Aljawhary, M. Antinolo, W.J. Chen, A. Lok, E. Mungall, J.P.S. Wong, R. Zhao, and J.P.D. Abbatt (2015) Formation of hydroxyl radicals from photolysis of secondary organic aerosol material, Atmos. Chem. Phys., 15, 7831-7840. crossref(new window)

Bae, G.N., J.Y. Park, M.C. Kim, S.B. Lee, K.C. Moon, and Y.P. Kim (2008) Effect of light intensity on the ozone formation and the aerosol number concentration of ambient air in Seoul, Part. Aerosol Res., 4, 9-10.

Becker, K.H. (1996) The European Photoreactor EUPHORE: Design and Technical Development of the European Photoreactor and First Experimental Results: Final Report of the EC-Project: Contract EV5V-CT92-0059: Funding Period, January 1993-December 1995.

Benson, S.W. (1965) Effects of resonance and structure on the thermochemistry of organic peroxy radicals and the kinetics of combustion reactions1, J. Am. Chem. Soc., 87, 972-979. crossref(new window)

Blando, J.D. and B.J. Turpin (2000) Secondary organic aerosol formation in cloud and fog droplets: a literature evaluation of plausibility, Atmos. Environ., 34, 1623-1632. crossref(new window)

Boge, O., A. Mutzel, Y. Iinuma, P. Yli-Pirila, A. Kahnt, J. Joutsensaari, and H. Herrmann (2013) Gas-phase products and secondary organic aerosol formation from the ozonolysis and photooxidation of myrcene, Atmos. Environ., 79, 553-560. crossref(new window)

Carlton, A.G., B.J. Turpin, H.J. Lim, K.E. Altieri, and S. Seitzinger (2006) Link between isoprene and secondary organic aerosol (SOA): Pyruvic acid oxidation yields low volatility organic acids in clouds, Geophys. Res. Lett., 33, 10.1029/2005gl025374. crossref(new window)

Carlvert, J.G., R. Atkinson, K.H. Becker, R.M. Kamens, J.H. Seinfeld, T.J. Wallington, and G. Yarwood (2002) The Mechanisms of Atmospheric Oxidation of Aromatic Hydrocarbons, Oxford University Press: New York.

Carter, W.P.L., D.R. Cocker Iii, D.R. Fitz, I.L. Malkina, K. Bumiller, C.G. Sauer, J.T. Pisano, C. Bufalino, and C. Song (2005) A new environmental chamber for evaluation of gas-phase chemical mechanisms and secondary aerosol formation, Atmos. Environ., 39, 7768-7788. crossref(new window)

Chattopadhyay, S., H.J. Tobias, and P.J. Ziemann (2001) A method for measuring vapor pressures of low-volatility organic aerosol compounds using a thermal desorption particle beam mass spectrometer, Anal. Chem., 73, 3797-3803. crossref(new window)

Chen, S. (2014) China to build 'world's largest' smog chamber to solve pollution puzzle, South China Morning Post, Retrived from china/article/1436336/china-build-worlds-largestsmog-chamber-solve-pollution-puzzle?page=all.

Claeys, M., B. Graham, G. Vas, W. Wang, R. Vermeylen, V. Pashynska, J. Cafmeyer, P. Guyon, M.O. Andreae, P. Artaxo, and W. Maenhaut (2004) Formation of secondary organic aerosols through photooxidation of isoprene, Science, 303, 1173-1176. crossref(new window)

Cocker, D.R., S.L. Clegg, R.C. Flagan, and J.H. Seinfeld (2001a) The effect of water on gas-particle partitioning of secondary organic aerosol. Part I: alphapinene/ozone system, Atmos. Environ., 35, 6049-6072. crossref(new window)

Cocker, D.R., R.C. Flagan, and J.H. Seinfeld (2001b) State-ofthe-art chamber facility for studying atmospheric aerosol chemistry, Environ. Sci. Technol., 35, 2594-2601. crossref(new window)

Docherty, K.S., W. Wu, Y.B. Lim, and P.J. Ziemann (2005) Contributions of organic peroxides to secondary aerosol formed from reactions of monoterpenes with O-3, Environ. Sci. Technol., 39, 4049-4059. crossref(new window)

Ehn, M., J.A. Thornton, E. Kleist, M. Sipila, H. Junninen, I. Pullinen, M. Springer, F. Rubach, R. Tillmann, B. Lee, F. Lopez-Hilfiker, S. Andres, I.H. Acir, M. Rissanen, T. Jokinen, S. Schobesberger, J. Kangasluoma, J. Kontkanen, T. Nieminen, T. Kurten, L.B. Nielsen, S. Jorgensen, H.G. Kjaergaard, M. Canagaratna, M. Dal Maso, T. Berndt, T. Petaja, A. Wahner, V.M. Kerminen, M. Kulmala, D.R. Worsnop, J. Wildt, and T.F. Mentel (2014) A large source of lowvolatility secondary organic aerosol, Nature, 506, 476-479. crossref(new window)

El-Sayed, M.M.H., Y. Wang, and C.J. Hennigan (2015) Direct atmospheric evidence for the irreversible formation of aqueous secondary organic aerosol, Geophys. Res. Lett., 42, 5577-5586. crossref(new window)

Ervens, B., A.G. Carlton, B.J. Turpin, K.E. Altieri, S.M. Kreidenweis, and G. Feingold (2008) Secondary organic aerosol yields from cloud-processing of isoprene oxidation products, Geophys. Res. Lett., 35, 10.1029/2007gl031828. crossref(new window)

Ervens, B. and R. Volkamer (2010) Glyoxal processing by aerosol multiphase chemistry: towards a kinetic modeling framework of secondary organic aerosol formation in aqueous particles, Atmos. Chem. Phys., 10, 8219-8244. crossref(new window)

Finlayson-Pitts, B.J. and J.N. Pitts Jr (1999) Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications. Academic press.

Forstner, H.J.L., R.C. Flagan, and J.H. Seinfeld (1997) Molecular speciation of secondary organic aerosol from photooxidation of the higher alkenes: 1-octene and 1-decene, Atmos. Environ., 31, 1953-1964. crossref(new window)

Forziati, A.F., D.L. Camin, and F.D. Rossini (1950) Density, refractive index, boiling point, and vapor pressure of 8 monoolefin (1-alkene), 6 pentadiene, and 2 cyclomonoolefin hydrocarbons, J. Res. Natl. Stand., 45, 406-410. crossref(new window)

Fratzke, A.R. and P.J. Reilly (1986) Thermodynamic and kinetic analysis of the dimerization of aqueous glyoxal, Int. J. Chem. Kinet., 18, 775-789. crossref(new window)

Fry, J.L., D.C. Draper, K.C. Barsanti, J.N. Smith, J. Ortega, P.M. Winkler, M.J. Lawler, S.S. Brown, P.M. Edwards, R.C. Cohen, and L. Lee (2014) Secondary organic aerosol formation and organic nitrate yield from $NO_3$ oxidation of biogenic hydrocarbons, Environ. Sci. Technol., 48, 11944-11953. crossref(new window)

Fu, T.-M., D.J. Jacob, F. Wittrock, J.P. Burrows, M. Vrekoussis, and D.K. Henze (2008) Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols, J. Geophys. Res. Atmos., 113, 10.1029/2007jd009505. crossref(new window)

Galloway, M.M., P.S. Chhabra, A.W.H. Chan, J.D. Surratt, R.C. Flagan, J.H. Seinfeld, and F.N. Keutsch (2009) Glyoxal uptake on ammonium sulphate seed aerosol: reaction products and reversibility of uptake under dark and irradiated conditions, Atmos. Chem. Phys., 9, 3331-3345. crossref(new window)

Gardner, S. (2014) LA Smog: the battle against air pollution, Marketplace, Retrieved from

Geiger, H., J. Kleffmann, and P. Wiesen (2002) Smog chamber studies on the influence of diesel exhaust on photosmog formation, Atmos. Environ., 36, 1737-1747. crossref(new window)

Glowacki, D.R., J. Lockhart, M.A. Blitz, S.J. Klippenstein, M.J. Pilling, S.H. Robertson, and P.W. Seakins (2012) Interception of Excited Vibrational Quantum States by $O_2$ in Atmospheric Association Reactions, Science, 337, 1066-1069. crossref(new window)

Goldstein, A.H. and I.E. Galbally (2007) Known and unexplored organic constituents in the earth's atmosphere, Environ. Sci. Technol., 41, 1514-1521. crossref(new window)

Gong, H.M., A. Matsunaga, and P.J. Ziemann (2005) Products and mechanism of secondary organic aerosol formation from reactions of linear alkenes with $NO_3$ radicals, J. Phys. Chem. A, 109, 4312-4324. crossref(new window)

Griffin, R.J., D.R. Cocker, R.C. Flagan, and J.H. Seinfeld (1999) Organic aerosol formation from the oxidation of biogenic hydrocarbons, J. Geophys. Res. Atmos., 104, 3555-3567. crossref(new window)

Guenther, A., C.N. Hewitt, D. Erickson, R. Fall, C. Geron, T. Graedel, P. Harley, L. Klinger, M. Lerdau, W.A. McKay, T. Pierce, B. Scholes, R. Steinbrecher, R. Tallamraju, J. Taylor, and P. Zimmerman (1995) A global model of natural volatile organic compound emissions, J. Geophys. Res. Atmos., 100, 8873-8892. crossref(new window)

Haagen-Smit, A.J. (1952) Chemistry and physiology of Los Angeles smog, Ind. Eng. Chem., 44, 1342-1346. crossref(new window)

Haagen-Smit, A.J. (1963) Photochemistry and smog, J. Air Pollut. Control Assoc., 13, 444-454. crossref(new window)

Haagen-Smit, A.J., C.E. Bradley, and M.M. Fox (1953) Ozone formation in photochemical oxidation of organic substances, Ind. Eng. Chem., 45, 2086-2089. crossref(new window)

Hatakeyama, S. and H. Akimoto (1994) Reactions of criegee intermediates in the gas phase, Res. Chem. Intermed., 20, 503-524. crossref(new window)

Hawkins, J.E. and G.T. Armstrong (1954) Physical and thermodynamic properties of terpenes. III. The Vapor pressures of ${\alpha}$-pinene and ${\beta}$-pinene, J. Am. Chem. Soc., 76, 3756-3758. crossref(new window)

Hennigan, C.J., M.H. Bergin, A.G. Russell, A. Nenes, and R.J. Weber (2009) Gas/particle partitioning of watersoluble organic aerosol in Atlanta, Atmos. Chem. Phys., 9, 3613-3628. crossref(new window)

Hess, G.D., F. Carnovale, M.E. Cope, and G.M. Johnson (1992) The evaluation of some photochemical smog reaction mechanisms - I. Temperature and initial composition effects, Atmos. Environ., 26A, 625-641.

Hodas, N., A.P. Sullivan, K. Skog, F.N. Keutsch, J.L. Collett, S. Decesari, M.C. Facchini, A.G. Carlton, A. Laaksonen, and B.J. Turpin (2014) Aerosol liquid water driven by anthropogenic nitrate: implications for lifetimes of water-soluble organic gases and potential for secondary organic aerosol formation, Environ. Sci. Technol., 48, 11127-11136. crossref(new window)

Hong, Y.D., J.S. Han, J.D. Park, D.W. Jung, B.J. Kong, S.Y. Kim, and D.K. Lee (2001) A Study on the High-Ozone Episode and Photochemical Smog (I), National Instiute of Environmental Research Report 2001-13-605.

Huang, R.-J., Y. Zhang, C. Bozzetti, K.-F. Ho, J.-J. Cao, Y. Han, K.R. Daellenbach, J.G. Slowik, S.M. Platt, F. Canonaco, P. Zotter, R. Wolf, S.M. Pieber, E.A. Bruns, M. Crippa, G. Ciarelli, A. Piazzalunga, M. Schwikowski, G. Abbaszade, J. Schnelle-Kreis, R. Zimmermann, Z. An, S. Szidat, U. Baltensperger, I.E. Haddad, and A.S.H. Prevot (2014) High secondary aerosol contribution to particulate pollution during haze events in China, Nature, 514, 218-222. crossref(new window)

Hynes, R.G., D.E. Angove, S.M. Saunders, V. Haverd, and M. Azzi (2005) Evaluation of two MCM v3.1 alkene mechanisms using indoor environmental chamber data, Atmos. Environ., 39, 7251-7262. crossref(new window)

Im, Y., M. Jang, and R.L. Beardsley (2014) Simulation of aromatic SOA formation using the lumping model integrated with explicit gas-phase kinetic mechanisms and aerosol-phase reactions, Atmos. Chem. Phys., 14, 4013-4027. crossref(new window)

Ip, H.S.S., X.H.H. Huang, and J.Z. Yu (2009) Effective Henry's law constants of glyoxal, glyoxylic acid, and glycolic acid, Geophys. Res. Lett., 36, 10.1029/2008GL036212. crossref(new window)

Jang, M. and R.M. Kamens (1999) Newly characterized products and composition of secondary aerosols from the reaction of alpha-pinene with ozone, Atmos. Environ., 33, 459-474. crossref(new window)

Jang, M.S., N.M. Czoschke, S. Lee, and R.M. Kamens (2002) Heterogeneous atmospheric aerosol production by acid-catalyzed particle-phase reactions, Science, 298, 814-817. crossref(new window)

Jang, M.S. and R.M. Kamens (2001) Characterization of secondary aerosol from the photooxidation of toluene in the presence of $NO_x$ and 1-propene, Environ. Sci. Technol., 35, 3626-3639. crossref(new window)

Jimenez, J.L., M.R. Canagaratna, N.M. Donahue, A.S.H. Prevot, Q. Zhang, J.H. Kroll, P.F. DeCarlo, J.D. Allan, H. Coe, N.L. Ng, A.C. Aiken, K.S. Docherty, I.M. Ulbrich, A.P. Grieshop, A.L. Robinson, J. Duplissy, J.D. Smith, K.R. Wilson, V.A. Lanz, C. Hueglin, Y.L. Sun, J. Tian, A. Laaksonen, T. Raatikainen, J. Rautiainen, P. Vaattovaara, M. Ehn, M. Kulmala, J.M. Tomlinson, D.R. Collins, M.J. Cubison, E.J. Dunlea, J.A. Huffman, T.B. Onasch, M.R. Alfarra, P.I. Williams, K. Bower, Y. Kondo, J. Schneider, F. Drewnick, S. Borrmann, S. Weimer, K. Demerjian, D. Salcedo, L. Cottrell, R. Griffin, A. Takami, T. Miyoshi, S. Hatakeyama, A. Shimono, J.Y. Sun, Y.M. Zhang, K. Dzepina, J.R. Kimmel, D. Sueper, J.T. Jayne, S.C. Herndon, A.M. Trimborn, L.R. Williams, E.C. Wood, A.M. Middlebrook, C.E. Kolb, U. Baltensperger, and D.R. Worsnop (2009) Evolution of organic aerosols in the atmosphere, Science, 326, 1525-1529. crossref(new window)

Kalberer, M., D. Paulsen, M. Sax, M. Steinbacher, J. Dommen, A.S.H. Prevot, R. Fisseha, E. Weingartner, V. Frankevich, R. Zenobi, and U. Baltensperger (2004) Identification of polymers as major components of atmospheric organic aerosols, Science, 303, 1659-1662. crossref(new window)

Kalberer, M., J. Yu, D.R. Cocker, R.C. Flagan, and J.H. Seinfeld (2000) Aerosol formation in the cyclohexeneozone system, Environ. Sci. Technol., 34, 4894-4901. crossref(new window)

Kamens, R.M., M.W. Gery, H.E. Jeffries, M. Jackson, and E.I. Cole (1982) Ozone-Isoprene Reactions - Product Formation and Aerosol Potential, Int. J. Chem. Kinet., 14, 955-975. crossref(new window)

Kamm, S., O. Mohler, K.H. Naumann, H. Saathoff, and U. Schurath (1999) The heterogeneous reaction of ozone with soot aerosol, Atmos. Environ., 33, 4651-4661. crossref(new window)

Kanakidou, M., J.H. Seinfeld, S.N. Pandis, I. Barnes, F.J. Dentener, M.C. Facchini, R. Van Dingenen, B. Ervens, A. Nenes, C.J. Nielsen, E. Swietlicki, J.P. Putaud, Y. Balkanski, S. Fuzzi, J. Horth, G.K. Moortgat, R. Winterhalter, C.E.L. Myhre, K. Tsigaridis, E. Vignati, E.G. Stephanou, and J. Wilson (2005) Organic aerosol and global climate modelling: a review, Atmos. Chem. Phys., 5, 1053-1123. crossref(new window)

Kim, H., B. Barkey, and S.E. Paulson (2010) Real refractive indices of ${\alpha}$- and ${\beta}$-pinene and toluene secondary organic aerosols generated from ozonolysis and photo-oxidation, J. Geophys. Res. Atmos., 115, 10.1029/2010JD014549. crossref(new window)

Kim, H. and S.E. Paulson (2013) Real refractive indices and volatility of secondary organic aerosol generated from photooxidation and ozonolysis of limonene, ${\alpha}$-pinene and toluene, Atmos. Chem. Phys., 13, 7711-7723. crossref(new window)

Kim, J. (2002) Photochemical Reactions of Real Gas in an Indoor Smog Chamber, M.D. Thesis, Departiment of Environmental Engineering, The University of Seoul.

Kim, Y., J.Y. Kim, S.B. Lee, K.C. Moon, and G.N. Bae (2015) Review on the recent $PM_{2.5}$ studies in China, J. Korean Soc. Atmos. Environ., 31, 411-429. crossref(new window)

King, S.M., T. Rosenoern, J.E. Shilling, Q. Chen, and S.T. Martin (2009) Increased cloud activation potential of secondary organic aerosol for atmospheric mass loadings, Atmos. Chem. Phys., 9, 2959-2971. crossref(new window)

Kleindienst, T.E., M. Jaoui, M. Lewandowski, J.H. Offenberg, C.W. Lewis, P.V. Bhave, and E.O. Edney (2007a) Estimates of the contributions of biogenic and anthropogenic hydrocarbons to secondary organic aerosol at a southeastern US location, Atmos. Environ., 41, 8288-8300. crossref(new window)

Kleindienst, T.E., M. Lewandowski, J.H. Offenberg, M. Jaoui, and E.O. Edney (2007b) Ozone-isoprene reaction: Re-examination of the formation of secondary organic aerosol, Geophys. Res. Lett., 34, 10.1029/2006gl027485. crossref(new window)

Kroll, J.H., N.M. Donahue, V.J. Cee, K.L. Demerjian, and J.G. Anderson (2002) Gas-phase ozonolysis of alkenes: Formation of OH from anti carbonyl oxides, J. Am. Chem. Soc., 124, 8518-8519. crossref(new window)

Kroll, J.H., N.L. Ng, S.M. Murphy, R.C. Flagan, and J.H. Seinfeld (2006) Secondary organic aerosol formation from isoprene photooxidation, Environ. Sci. Technol., 40, 1869-1877. crossref(new window)

Kroll, J.H., N.L. Ng, S.M. Murphy, V. Varutbangkul, R.C. Flagan, and J.H. Seinfeld (2005) Chamber studies of secondary organic aerosol growth by reactive uptake of simple carbonyl compounds, J. Geophys. Res. Atmos., 110, 10.1029/2005JD006004. crossref(new window)

Kulmala, M. (2015) Atmospheric chemistry: China's choking cocktail, Nature, 526, 497-499. crossref(new window)

Kwok, E.S.C. and R. Atkinson (1995) Estimation of hydroxyl radical reaction-rate constants for gas-phase organiccompounds using a structure-reactivity relationship -an update, Atmos. Environ., 29, 1685-1695. crossref(new window)

Lai, C.C., B.J. Finlayson-Pitts, and W.V. Willis (1990) Formation of secondary ozonides from the reaction of an unsaturated phosphatidylcholine with ozone, Chem. Res. Toxicol., 3, 517-523. crossref(new window)

Lee, S.-B., G.-N. Bae, Y.-M. Lee, and K.-C. Moon (2013) Wall contamination of teflon bags used as a photochemical reaction chamber of ambient air, Part. Aerosol Res., 9, 149-161. crossref(new window)

Lee, S.-B., G.-N. Bae, Y.-M. Lee, K.-C. Moon, and M. Choi (2010) Correlation between light intensity and ozone formation for photochemical smog in urban air of Seoul, Aerosol Air Qual. Res., 10, 540-549. crossref(new window)

Lee, S., M. Jang, and R.M. Kamens (2004) SOA formation from the photooxidation of ${\alpha}$-pinene in the presence of freshly emitted diesel soot exhaust, Atmos. Environ., 38, 2597-2605. crossref(new window)

Li, H., Z. Chen, L. Huang, and D. Huang (2016) Organic peroxides' gas-particle partitioning and rapid heterogeneous decomposition on secondary organic aerosol, Atmos. Chem. Phys., 16, 1837-1848. crossref(new window)

Li, H., X. Wang, W. Zhang, Y. Zhang, F. Bi, F. Xia, H. Li, and L. Meng (2014) Progress and prospective of atmospheric photochemical smog chamber simulation study in China, 4th Sino-French Joint Workshop on Atmospheric Environment, December 10th-13th, Lyon, France.

Liggio, J., S.-M. Li, and R. McLaren (2005) Reactive uptake of glyoxal by particulate matter, J. Geophys. Res. Atmos., 110, 10.1029/2004JD005113. crossref(new window)

Lim, Y.B., Y. Tan, M.J. Perri, S.P. Seitzinger, and B.J. Turpin (2010) Aqueous chemistry and its role in secondary organic aerosol (SOA) formation, Atmos. Chem. Phys., 10, 10521-10539. crossref(new window)

Lim, Y.B., Y. Tan, and B.J. Turpin (2013) Chemical insights, explicit chemistry, and yields of secondary organic aerosol from OH radical oxidation of methylglyoxal and glyoxal in the aqueous phase, Atmos. Chem. Phys., 13, 8651-8667. crossref(new window)

Lim, Y.B. and B.J. Turpin (2015) Laboratory evidence of organic peroxide and peroxyhemiacetal formation in the aqueous phase and implications for aqueous OH, Atmos. Chem. Phys., 15, 12867-12877.

Lim, Y.B. and P.J. Ziemann (2005) Products and mechanism of secondary organic aerosol formation from reactions of n-alkanes with OH radicals in the presence of $NO_x$, Environ. Sci. Technol., 39, 9229-9236. crossref(new window)

Lim, Y.B. and P.J. Ziemann (2009a) Chemistry of secondary organic aerosol formation from OH radical-initiated reactions of linear, branched, and cyclic alkanes in the presence of $NO_x$, Aerosol Sci. Technol., 43, 604-619. crossref(new window)

Lim, Y.B. and P.J. Ziemann (2009b) Effects of molecular structure on aerosol yields from OH radical-initiated reactions of linear, branched, and cyclic alkanes in the presence of $NO_x$, Environ. Sci. Technol., 43, 2328-2334. crossref(new window)

Lim, Y.B. and P.J. Ziemann (2009c) Kinetics of the heterogeneous conversion of 1,4-hydroxycarbonyls to cyclic hemiacetals and dihydrofurans on organic aerosol particles, Phys. Chem. Chem. Phys., 11, 8029-8039. crossref(new window)

Limbeck, A., M. Kulmala, and H. Puxbaum (2003) Secondary organic aerosol formation in the atmosphere via heterogeneous reaction of gaseous isoprene on acidic particles, Geophys. Res. Lett., 30, 10.1029/2003GL017738. crossref(new window)

Matsunaga, A., K.S. Docherty, Y.B. Lim, and P.J. Ziemann (2009) Composition and yields of secondary organic aerosol formed from OH radical-initiated reactions of linear alkenes in the presence of $NO_x$: Modeling and measurements, Atmos. Environ., 43, 1349-1357. crossref(new window)

Mauldin Iii, R.L., T. Berndt, M. Sipila, P. Paasonen, T. Petaja, S. Kim, T. Kurten, F. Stratmann, V.M. Kerminen, and M. Kulmala (2012) A new atmospherically relevant oxidant of sulphur dioxide, Nature, 488, 193-196. crossref(new window)

Neeb, P., O. Horie, and G.K. Moortgat (1996) Gas-phase ozonolysis of ethene in the presence of hydroxylic compounds, Int. J. Chem. Kinet., 28, 721-730. crossref(new window)

Ng, N.L., P.S. Chhabra, A.W.H. Chan, J.D. Surratt, J.H. Kroll, A.J. Kwan, D.C. McCabe, P.O. Wennberg, A. Sorooshian, S.M. Murphy, N.F. Dalleska, R.C. Flagan, and J.H. Seinfeld (2007a) Effect of $NO_x$ level on secondary organic aerosol (SOA) formation from the photooxidation of terpenes, Atmos. Chem. Phys., 7, 5159-5174. crossref(new window)

Ng, N.L., P.S. Chhabra, A.W.H. Chan, J.D. Surratt, J.H. Kroll, A.J. Kwan, D.C. McCabe, P.O. Wennberg, A. Sorooshian, S.M. Murphy, N.F. Dalleska, R.C. Flagan, and J.H. Seinfeld (2007b) Effect of $NO_x$ level on secondary organic aerosol (SOA) formation from the photooxidation of terpenes, Atmos. Chem. Phys., 7, 5159-5174. crossref(new window)

Ng, N.L., J.H. Kroll, A.W.H. Chan, P.S. Chhabra, R.C. Flagan, and J.H. Seinfeld (2007c) Secondary organic aerosol formation from m-xylene, toluene, and benzene, Atmos. Chem. Phys., 7, 3909-3922. crossref(new window)

Ng, N.L., A.J. Kwan, J.D. Surratt, A.W.H. Chan, P.S. Chhabra, A. Sorooshian, H.O.T. Pye, J.D. Crounse, P.O. Wennberg, R.C. Flagan, and J.H. Seinfeld (2008a) Secondary organic aerosol (SOA) formation from reaction of isoprene with nitrate radicals ($NO_3$), Atmos. Chem. Phys., 8, 4117-4140.

Ng, N.L., A.J. Kwan, J.D. Surratt, A.W.H. Chan, P.S. Chhabra, A. Sorooshian, H.O.T. Pye, J.D. Crounse, P.O. Wennberg, R.C. Flagan, and J.H. Seinfeld (2008b) Secondary organic aerosol (SOA) formation from reaction of isoprene with nitrate radicals ($NO_3$), Atmos. Chem. Phys., 8, 4117-4140.

Nishino, N., J. Arey, and R. Atkinson (2010) Formation yields of glyoxal and methylglyoxal from the gas-phase OH radical-initiated reactions of toluene, xylenes, and trimethylbenzenes as a function of $NO_2$ concentration, J. Phys. Chem. A, 114, 10140-10147. crossref(new window)

Odum, J.R., T. Hoffmann, F. Bowman, D. Collins, R.C. Flagan, and J.H. Seinfeld (1996) Gas/particle partitioning and secondary organic aerosol yields, Environ. Sci. Technol., 30, 2580-2585. crossref(new window)

Odum, J.R., T.P.W. Jungkamp, R.J. Griffin, R.C. Flagan, and J.H. Seinfeld (1997) The atmospheric aerosol-forming potential of whole gasoline vapor, Science, 276, 96-99. crossref(new window)