JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A comparison of the Effects on Abdominal Muscles between the Abdominal Drawing-in Maneuver and Maximal Expiration in Chronic Stroke Patients
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A comparison of the Effects on Abdominal Muscles between the Abdominal Drawing-in Maneuver and Maximal Expiration in Chronic Stroke Patients
Seo, Dong-Kwon; Kim, Ji-Seon;
  PDF(new window)
 Abstract
PURPOSE: Although the abdominal drawing-in maneuver is commonly used in clinical training for trunk stability, performing this procedure in stroke patients is difficult; instead, maximal expiration can be much easily performed in stroke patients. In the present study, we first aimed to demonstrate the effects of the abdominal drawing-in maneuver and maximal expiration on trunk stability in stroke patients. Moreover, we compared the thickness of the transverse abdominal, internal oblique, and external oblique muscles on the paretic and non-paretic sides. METHODS: We used ultrasonography to measure the change in the thickness of the transverse abdominal, internal oblique, and external oblique muscles on the paretic and non-paretic sides at rest, while performing the abdominal drawing-in maneuver, and while performing maximal expiration in 23 stroke patients. The ratio of muscle thickness between different conditions was estimated and included in the data analysis (abdominal drawing-in maneuver / at rest and, maximal expiration / at rest). RESULTS: The ratio of the thickness of the transverse abdominal, internal oblique and external oblique muscles during maximal expiration was significantly different on the paretic side (p < 0.05). The ratio of muscle thicknesses on the non-paretic side was greater during maximal expiration than during the abdominal drawing-in maneuver, although this difference was not significant (p > 0.05). CONCLUSION: Our results suggest that maximal expiration more effectively increased the abdominal muscle thickness on the paretic side. Hence, we recommend the application of maximal expiration in clinical trunk stability training on the paretic side of stroke patients.
 Keywords
Abdominal drawing-in maneuver;Maximal expiration;Stroke;Trunk stability;Ultrasonography;
 Language
Korean
 Cited by
 References
1.
Behm DG, Drinkwater EJ, Willardson JM, et al. The use of instability to train the core musculature. Appl Physiol Nutr Metab. 2010;35(1):91-108. crossref(new window)

2.
Hides J, Wilson S, Stanton W, et al. An MRI investigation into the function of the transversus abdominis muscle during "drawing-in" of the abdominal wall. Spine. 2006;31(6):175-8. crossref(new window)

3.
Hides JA, Belavy DL, Cassar L, et al. Altered response of the anterolateral abdominal muscles to simulated weight-bearing in subjects with low back pain. Eur Spine J. 2009;18(3):410-8. crossref(new window)

4.
Hodges PW, Gandevia SC, Richardson CA. Contractions of specific abdominal muscles in postural tasks are affected by respiratory maneuvers. J Appl Physiol. 1997;83(3):753-60.

5.
Hodges PW, Pengel LH, Herbert RD, et al. Measurement of muscle contraction with ultrasound imaging. Muscle Nerve. 2003;27(6):682-92. crossref(new window)

6.
Hodges PW, Richardson CA. Feedforward contraction of transversus abdominis is not influenced by the direction of arm movement. Exp Brain Res. 1997;114 (2):362-70. crossref(new window)

7.
Ishida H, Hirose R, Watanabe S. Comparison of changes in the contraction of the lateral abdominal muscles between the abdominal drawing-in maneuver and breathe held at the maximum expiratory level. Man Ther. 2012;17(5):427-31. crossref(new window)

8.
Jull GA, Richardson CA. Motor control problems in patients with spinal pain: a new direction for therapeutic exercise. J Manipulative Physiol Ther. 2000;23(2): 115-7. crossref(new window)

9.
Karatas M, Cetin N, Bayramoglu M, et al. Trunk muscle strength in relation to balance and functional disability in unihemispheric stroke patients. Am J Phys Med Rehabil. 2004;83(2):81-7. crossref(new window)

10.
Karthikbabu S, Rao BK, Manikandan N, et al. Role of trunk rehabilitation on trunk control, balance and gait in patients with chronic stroke: a pre-post design. Neurosci Med 2011;2:61-7. crossref(new window)

11.
Mannion AF, Pulkovski N, Gubler D, et al. Muscle thickness changes during abdominal hollowing: an assessment of between-day measurement error in controls and patients with chronic low back pain. Eur Spine J. 2008;17(4):494-501. crossref(new window)

12.
Marsden JF, Hough A, Shum G, et al. Deep abdominal muscle activity following supratentorial stroke. J Electromyogr Kinesiol. 2013;23(4):985-90. crossref(new window)

13.
Misuri G, Colagrande S, Gorini M, et al. In vivo ultrasound assessment of respiratory function of abdominal muscles in normal subjects. Eur Respir J. 1997;10(12): 2861-7. crossref(new window)

14.
Nelles G, Spiekermann G, Jueptner M, et al. Reorganization of sensory and motor systems in hemiplegic stroke patients. A positron emission tomography study. Stroke. 1999;30(8):1510-6. crossref(new window)

15.
Park HJ, Shin WS , Oh DW. The Study of Asymmetrical Contraction of the Lateral Abdominal Muscles in Stroke Patients using Ultrasound Imaging. J Korean Soc Phys Med. 2012;7(3):319-27. crossref(new window)

16.
Peschers UM, Gingelmaier A, Jundt K, et al. Evaluation of pelvic floor muscle strength using four different techniques. Int Urogynecol J Pelvic Floor Dysfunct. 2001;12(1):27-30. crossref(new window)

17.
Richardson CA, Hides JA, Wilson S, et al. Lumbo-pelvic joint protection against antigravity forces: motor control and segmental stiffness assessed with magnetic resonance imaging. J Gravit Physiol. 2004;11(2): P119-22.

18.
Richardson CA, Jull GA. Muscle control-pain control. What exercises would you prescribe? Man Ther. 1995;1(1): 2-10. crossref(new window)

19.
Richardson CA, Snijders CJ, Hides JA, et al. The relation between the transversus abdominis muscles, sacroiliac joint mechanics, and low back pain. Spine. 2002;27(4): 399-405. crossref(new window)

20.
Ryerson S, Byl NN, Brown DA, et al. Altered trunk position sense and its relation to balance functions in people post-stroke. J Neurol Phys Ther. 2008;32(1):14-20. crossref(new window)

21.
Teyhen DS, Bluemle LN, Dolbeer JA, et al. Changes in lateral abdominal muscle thickness during the abdominal drawing-in maneuver in those with lumbopelvic pain. J Orthop Sports Phys Ther. 2009;39(11):791-8. crossref(new window)

22.
Teyhen DS, Miltenberger CE, Deiters HM, et al. The use of ultrasound imaging of the abdominal drawing-in maneuver in subjects with low back pain. J Orthop Sports Phys Ther. 2005;35(6):346-55. crossref(new window)

23.
Urquhart DM, Hodges PW, Story IH. Postural activity of the abdominal muscles varies between regions of these muscles and between body positions. Gait Posture. 2005;22(4):295-301. crossref(new window)

24.
Verheyden G, Nieuwboer A, Van de Winckel A, et al. Clinical tools to measure trunk performance after stroke: a systematic review of the literature. Clin Rehabil. 2007;21(5):387-94. crossref(new window)

25.
Verheyden G, Vereeck L, Truijen S, et al. Trunk performance after stroke and the relationship with balance, gait and functional ability.Clin Rehabil. 2006;20(5):451-8. crossref(new window)