JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Geometrically Nonlinear Analysis of Plates and Shells with Reissner-Mindlin Isogeometric Degenerated Shell Element
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Geometrically Nonlinear Analysis of Plates and Shells with Reissner-Mindlin Isogeometric Degenerated Shell Element
Park, Kyoung-Sub; Lee, Sang-Jin;
 
 Abstract
In this study, geometrically nonlinear analysis of plate and shell structures is carried out by using a degenerated shell element. The present shell element is formulated by using the isogeometric concept. Reissner-Mindlin assumption is adopted in the element formulation where total Lagrange formulation is used. In particular, the positions of control points is consistently used to create the normal vector for the mapping between control points and associated points on real surface. The arc-length method is employed to handle the snap-through behaviour of shells. Several benchmark tests are tackled to verify the performance of the present shell element. From numerical tests, the present shell element can remove locking phenomena with the only use of refinement technique and it performs satisfactorily for both thin and thick plate and shell structures under geometrically nonlinear situations.
 Keywords
Isogeometric analysis;Degenerated shell;Geometrically nonlinear;Refinement;Reissner-Mindlin;
 Language
Korean
 Cited by
 References
1.
Ahmad, S., Irons, B. M., & Zienkiewicz, O. C. (1970). Analysis of thick and thin shell structures by curved finite elements. Int. J. Num. Meth. Engng., 2, 419-451. crossref(new window)

2.
Benson, D. J., Bazilevs, Y., Hsu, M. C., & Hughes, T. J. R. (2010). Isogeometric shell analysis: The Reissner-Mindlin shell. Comput. Methods Appl. Mech. Engrg., 199, 276-289. crossref(new window)

3.
Bogner, F. K., Fox, R. L., & Schmit, L. A. (1965). The generation of inter-element compatible stiffness and mass matrices by the use of interpolation formulae. Proc. Conf. Matrix Melh. Srruct. Anal. Wright-Patterson AFB.

4.
Chattopadhyay, B., Sinha, P. K., & Mukhopadhyay, M. (1995). Geometrically nonlinear analysis of composite stiffened plates using finite elements. Composite Structures, 31, 107-118. crossref(new window)

5.
Cottrell, J. A., Hughes, T. J. R., & Bazilevs, Y. (2009). Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley, Chichester.

6.
Crisfield, M. A. (1981). A fast incremental/iterative solution procedure that handles snap-through. Computers and Structures, 13, 55-62. crossref(new window)

7.
Dornisch, W., Klinkela, S., & Simeon, B. (2013). Isogeometric Reissner-Mindlin shell analysis with exactly calculated director vectors. Comput. Methods Appl. Mech. Engrg., 253, 491-504. crossref(new window)

8.
Figueiras, J. A. (1983). Ultimate load analysis of anisotropic and reinforced concrete plates and shells. Ph.D. Thesis, Department of Civil Engineering, University College of Swansea.

9.
Hinton, E., & Owen, D. R. J. (1984). Finite element software for plates and shells. Swansea, UK, Pineridge Press, 235-273.

10.
Horrigmoe, G., & Bergan, P. G. (1978). Nonlinear analysis of free-form shells by flat finite elements. Comput. Methods Appl. Mech. Eng., 16, 11-35. crossref(new window)

11.
Hughes, T. J. R., Cottrell, J. A., & Bazilevs, Y. (2005). Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Engrg., 194, 4135-4195. crossref(new window)

12.
Lee, S. J., & Kim, H. R. (2012). Analysis of plates using isogeometric approach based on Reissner-Mindlin Theory. J. of Atchitectual Institute of Korea, Structure & Consttuction, 28(9), 75-82.

13.
Levy, S. (1972). Square plate with clamped edges under normal pressure producing large deflection. NACA, Tech. Note 847.

14.
Parisch, H. (1981). Large displacement of shells including material nonlinearities. Comput. Methods Appl. Mech. Eng., 27, 183-214. crossref(new window)

15.
Park, K. S., & Lee, S. J. (2014). Linear Aanalysis of Continuum Shells Using Isogeometric Degenerated Shell Element. J. of Atchitectual Institute of Korea, Structure & Consttuction, 30(10), 3-10.

16.
Pica, A., Wood, R. D., & Hinton, E. (1980). Finite Element Analysis of geometrically non-linear plate bending behaviour using a Mindlin formulation. Comput Struct., 11, 203-215. crossref(new window)

17.
Piegel, L., & Tiller, W. (1995). The NURBS Book. Springer-Verlag.

18.
Ramesh, G., & Krishnamoorthy, C. S. (1995). Geometrically non-linear analysis of plates and shallow shells by dynamic relaxation. Comput. Methods Appl. Mech. Engrg., 123, 15-32. crossref(new window)

19.
Razzaque, R. (1973). Program for triangular bending element with derivative smoothing. Int. J. Num. Meth. Engng., 5, 588-589. crossref(new window)

20.
Reissner, E. (1945). The effect of transverse shear deformation on the bending of elastic plate. ASME, J. Appl. Mech., 12, 69-76.

21.
Rushton, K. R. (1970). Large deflection of plates with initial curvature. Int. J. Mech. Sci., 12, 1037-1051. crossref(new window)

22.
Sheikh, A.H. & Mukhopadhyay, M. (2000). Geometric nonlinear analysis of stiffened plate by the spline finite strip method. Computers and Structures, 76, 765-785. crossref(new window)

23.
Singh, A. V., & Elaghabash, Y. (2003). On the finite displacement analysis of quadrangular plates, International Journal of Non-Linear Mechanics, 38, 1149-1162. crossref(new window)

24.
Stricklin, J. A., Haisler, W. E., Tisdale, P. R., & Gunderson, R. (1969). A rapidly converging triangular plate element. AIAA J., 7, 180-181. crossref(new window)

25.
Taylor, R. L. (1998). FEAP - A Finite Element Analysis Program. Ver. 7.4.

26.
Thankam, V. S., Singh, G., Rao, G. V., & Rath, A. K. (2003). Shear flexible element based on coupled displacement eld for large deflection analysis of laminated plates. Computers and Structures, 81, 309-320. crossref(new window)

27.
Uhm, T. K., & Youn, S. K. (2009). T-spline finite element method for the analysis of shell structures. Int. J. Numer. Meth. Engng., 80, 507-536. crossref(new window)

28.
Weil, N. A., & Newmark, N. M. (1956). Large deflections of elliptical plates. J. Appl. Mech., 23, 21-26.

29.
Zhang, Y. X., & Cheung, Y. K. (2003). Geometric nonlinear analysis of thin plates by a refined nonlinear non-conforming triangular plate element. Thin-Walled Structures, 41, 403-418. crossref(new window)