JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Topology Optimization for Plane Structures using Isogeometric Approach
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Topology Optimization for Plane Structures using Isogeometric Approach
Park, Gyeong-Im; Lee, Sang-Jin;
 
 Abstract
In this paper, the isogeometric topology optimization (TO) technique is presented for plane structures. Isogeometric concept uses the same NURBS basis functions for both the computer-aided geometric design (CAGD) representation and the field functions. Therefore, the exact geometric models are naturally used in TO process. In addition, the NURBS basis functions are consistently used as the material distribution functions. Since the point-wise design variables are adopted, the proposed TO technique is completely free from checker boarding phenomenon without additional constraints or a filtering technique. The validity and applicability of the presented TO technique are demonstrated by solving TO problems for plane structures and we also investigate the effect of isogeometric analysis parameters to the optimum topology.
 Keywords
Topology Optimization;Isogeometric Approach;Point-wise Density;Multi-patch;Checkerboard;Plane Structure;
 Language
Korean
 Cited by
 References
1.
Bae, J. E., Lee, S. J. & Kim, Y. B. (1997). Topology optimization for plane problem, Journal of the Architectural Institute of Korea, 13, 216-227.

2.
Bendsoe, M. P. & Kikuchi, N. (1988). Generating optimal topologies in structural design using homogenization method, Computer Methods in Applied Mechanics Engineering, 71, 197-224. crossref(new window)

3.
Bourdin, B. (2001). Filters in topology optimization, International Journal for Numerical Methods in Engineering, 50, 2143-2158. crossref(new window)

4.
de Boor (1978). A Practical Guide to Splines, Springer-Verlag, New York.

5.
Dede, L., Broden, M. J., & Hughes, T. J. R. (2012). Isogeometric analysis for topology optimization with a phase field model, Arch. Coumput. Methods Eng., 19, 427-465. crossref(new window)

6.
Gomes F. A. M. & Senne T. A. (2011). An SLP algorithm and its application to topology optimization. Computational and Applied Mathematics, 30, 53-89.

7.
Guest, J. K., Prevost, J. H. & Belytschko, T. (2004). Achieving minimum length scale in topology optimization using nodal design variables and projection functions, International Journal for Numerical Methods in Engineering, 61, 238-254. crossref(new window)

8.
Hassani, B., Khanzadi, M. & Tavakkoli, S. M. (2012). An isogeometric approach to structural topology optimization by optimality criteria, Structural and Multidisciplinary Optimization, 45, 223-233. crossref(new window)

9.
Hughes, T. J. R., Cottrell, J. A. & Bazileves, Y. (2005). Isogeometric Analysis: CAD, Finite Elements, NURBS, Exact Geometry and Mesh Refinement, Computer Methods in Applied Mechanics and Engineering, 194, 4135-4195. crossref(new window)

10.
Kane, C. & Schoenauer, M. (1996), Topological Optimum Design using Genetic Algorithms, Control and Cybernetics, 25, 1059-1088.

11.
Kumar, A. V. & Parthasarathy, A. (2011). Topology optimization using B-spline finite elements, Structural and Multidisciplinary Optimization, 44, 471-481. crossref(new window)

12.
Lee, S. J. (2003). Topology optimization of plane structures with multiload case, Journal of Computational Structural Engineering Institute of Korea, 16, 59-67

13.
Lee, S. J. (2014). Free vibration analysis of thin shells using isogeometric approach, Architectural Research, 16, 67-74. crossref(new window)

14.
Lee, S. J. & Kim, H. R. (2012). Analysis of plates using isogeometric approach based on Reissner-Mindlin Theory, Journal of the Architectural Institute of Korea, 28, 75-82.

15.
Lee, S. J. & Kim, H. R. (2013) Vibration and buckling of thick plates using isogeometric approach, Architectural Research, 15, 35-42. crossref(new window)

16.
Lee, S. J. & Park, G. I. (2013). A matlab code for structural topology optimization, Journal of the Architectural Institute of Korea, 29, 11-18.

17.
Lee, S. J. & Park, K. S. (2011). Free vibration analysis of elastic bars using isogeometric approach, Architectural Research, 13, 41-47. crossref(new window)

18.
Lee, S. J. & Park, K. S. (2013). Vibrations of Timoshenko beams with isogeometric approach, Applied Mathematical Modelling, 37, 9174-9190 crossref(new window)

19.
Long, C. (2007). Finite element developments and applications in structural topology optimization, Ph.D. Thesis, Mechanical Engineering, University of Pretoria.

20.
Matsui, K. & Terada, K. (2004). Continuous approximation of material distribution for topology optimization, International Journal for Numerical Methods in Engineering, 59, 1925-1944. crossref(new window)

21.
Nguyen, V. P., Simpson, R., Bordas, S. P. A., & Rabczuk, T. (2015). Isogeometric analysis: An overview and computer implementation aspects, Advances in Engineering Softwares, 117, 89-116.

22.
Park, K. S. & Lee, S. J. (2014). Linear analysis of continuum shell using isogeometric degenerated shell element, Journal of the Architectural Institute of Korea, 30, 3-10

23.
Paulino, G. H. & Le, C. H. (2009). Modified Q4/Q4 element for topology optimization, Structural and Multidisciplinary Optimization, 37, 255-264. crossref(new window)

24.
Qian, X. (2013). Topology optimization in B-spline space, Computer Methods in Applied Mechanics Engineering, 265, 15-35. crossref(new window)

25.
Seo, Y. D., Kim, H. J. & Youn, S. K. (2010). Isogeometric topology optimization using trimmed spline surfaces, Computer Methods in Applied Mechanics Engineering, 199, 3270-3296. crossref(new window)

26.
Sigmund, O. (2001). A 99 topology optimization code written in Matlab, Structural and Multidisciplinary Optimization, 21, 120-127. crossref(new window)

27.
Sigmund O. & Petersson J. (1998). Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima, Structural and Multidisciplinary Optimization, 16, 68-75. crossref(new window)

28.
Youn, S. K. & Park, S. H. (1997). A study on the shape extraction process in the structural topology optimization using homogenization material, Computers and Structures, 62, 527-538. crossref(new window)

29.
Wang, M. Y., Wang, X & Guo, D. (2003). A level set method for structural topology optimization, Computer Methods in Applied Mechanics Engineering, 192, 227-246 crossref(new window)