JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Development of an Gaussian Process Model using a Data Filtering Method
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Development of an Gaussian Process Model using a Data Filtering Method
Ahn, Ki Uhn; Kim, Deuk-Woo; Kim, Young-Jin; Park, Cheol Soo;
 
 Abstract
For better energy management of existing buildings, an accurate and fast prediction model is required. For this purpose, this study reports the development of a GP (Gaussian Process) model for an AHU fan of the real high-rise office building. The GP Model is a statistical data driven model, and requires far less inputs and demands less computing time than the whole building simulation tools. In this paper, the following is addressed: 1) the characteristics of the GP model, 2) the development the GP model, and 3)removal of outliers gathered from BEMS data, 4) validation of the GP model. In particular, RANSAC (RANdom SAmple Consensus) was employed for detecting the outliers of the measured data. It is concluded that the GP model accurately predict the fan energy consumption, and can be used for real time optimal control and fault detection of building systems in near future.
 Keywords
Gaussian Process;Data Filtering;RANSAC;Building Energy Management System (BEMS);
 Language
Korean
 Cited by
 References
1.
Abushakra, B. (1997). An Inverse Model to Predict and Evaluate the Energy Performance of Large Commercial and Institutional Buildings, in Proceedings of BS 1997, Prague, Czech Republic

2.
Allaire, D., & Willcox, K. (2010). Surrogate Modeling for Uncertainty Assessment with Application to Aviation Environmental System Models. AIAA Journal, 48(8), 1791-1803. crossref(new window)

3.
Azman, K., & Kocijan, J. (2007). Application of Gaussian processes for black-box modelling of biosystems. ISA Transactions, 46(4), 443-457. crossref(new window)

4.
Boskoski, P., Gasperin, M., Petelin, D., & Juricic, D. (2014). Bearing fault prognostics using Renyi entropy based features and Gaussian process models. Mechanical Systems and Signal Processing, 52-53, 327-337.

5.
Brahim-Belhouari, S., & Bermak, A. (2004). Gaussian process for nonstationary time series prediction. Computational Statistics & Data Analysis, 47(4), 705-712 crossref(new window)

6.
Brodley, C. E., & Friedl, M. A. (1999). Identifying Mislabeled Training Data. Journal of Artificial Intelligence Research, 11, 131-167.

7.
Eldred, M. S., Giunta, A. A., & Collins, S. S. (2004). Second-Order Corrections for Surrogate-Based Optimization with Model Hierarchies, in: Proceedings of 10th AIAA/ISSMO Multidisciplinary Analysis and Optimaization Conference, Albany, New York.

8.
Fisher, M. A., & Bolles, R. C. (1981). Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Communication of the ACM, 24(6), 381-395. crossref(new window)

9.
Gilks, W. R., Richardson, S., & Spiegelhalter, D. J. (1995). Markov Chain Monte Carlo in Practice, Chapman and Hall

10.
IBPSA, International Building Performance Simulation Association, in: Proceedings of the 7th to 14th Building Simulation, 2011-2015.

11.
Kumar, R., Jayaraman, V.K., & Kulkarni, B. D. (2005). An SVM classifier incorporating simultaneous noise reduction and feature selection: illustrative vase examples. Patten Recognition, 38(1), 41-49. crossref(new window)

12.
Li, Y., Wessels, L. F. A., de Ridder, D., & Reinders, M. J. T. (2007). Classification in the presence of class noise using a probabilistic kernel Fisher method. Pattern Recognition, 40(12), 3349-3357. crossref(new window)

13.
Liu, D., Yamashita, Y., & Ogawa H. (1995). Pattern Recognition in the Presence of Noise. Pattern Recognition, 28(7), 989-995. crossref(new window)

14.
Matas J., & Chum O. (2004). Randomized RANSAC with Td,d test. Image and Vision Computing, 22(10), 837-842. crossref(new window)

15.
Murphy, K. (2012). Machine Learning: A Probabilistic Perspective, MIT Press

16.
Murray-Smith, R., Johansen, T. A., & Shorten, R. (1999). On transient dynamics, off-equilibrium behaviour and identification in blended multiple model structures, in Proceedings of the European Control Conference, Karlsruhe, Germany

17.
Rao, S. S. (1996). Engineering optimization: Theory and practice, Wiley:New York

18.
Rasmussen, C. E., & Williams, C. K. I. (2006). Gaussian Processes for Machine Learning, MIT Press

19.
Roberts, S., Osborne, M., Ebden, M., Reece, S., Gibson, N., & Aigrain, S. (1984). Gaussian Process for Timeseries Modelling, Philosophical Transactions of the Royal Society (Part A), 371.

20.
Saez, J. A., Luengo, J., & Herrera, F. (2013). Predicting noise filtering efficacy with data complexity measures for nearest neighbor classification. Pattern Recognition, 46(1), 355-364. crossref(new window)

21.
Sun, A. Y. Wang, D., & Xu, X. (2014). Monthly streamflow forecasting using Gaussian Process Regression. Journal of Hydrology, 511(16), 72-81. crossref(new window)

22.
Wilson, D. L. (1972). Asymptotic properties of nearest neighbor rules using edited data, IEEE Transactions on Systems, Man and Cybernetics. SMC-2(3), 408-421.

23.
Wu, X., & Zhu, X. (2008). Mining With Noise Knowledge: Error-Aware Data Mining. IEEE Transactions on Systems, Man, and Cybernetics-Part A: System and Humans, 38(4), pp.917-932.

24.
Zhang, Y., O'Neill, Z., Wanger, T., & Augenbroe, G. A. (2013). An Inverse Model with Uncertainty Quantification to Estimate the Energy Performance of an Office Building, in Proceedings of BS2013, Chambery, France, August 26-28, 614-621.

25.
Zhu, X., & Wu, X. (2004). Class Noise vs. Attribute Noise: A Quantitative Study. Artificial Intelligence Review, 22(3), 177-210. crossref(new window)

26.
Zuliani, M. (2014). RANSAC for Dummies, Retrieved September 29, 2014 from http://vision.ece.ucsb.edu/-zuliani/Research/RANSAC/RANSAC.html