JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Room air Temperature Prediction Model using Genetic Programming and BEMS Data
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Room air Temperature Prediction Model using Genetic Programming and BEMS Data
Suh, Won Jun; Park, Cheol Soo;
 
 Abstract
Recently, BEMS(Building Energy Management Systems) are widely adopted in large existing buildings and there is a growing interest in applying model-assisted optimal control based on the BEMS data. Unfortunately, current BEMS are used only for measurement, data collection and rule-based operation. It would be ideal if a building's data-driven energy model can be automatically generated out of BEMS data and is used for real-time optimal control. This paper presents such approach that a data-driven genetic programming can be beneficially utilized for automatic development of a room air temperature prediction model. In this study, the room air temperature prediction model was developed and successfully validated using the genetic programming and actual BEMS data. In the paper, pros and cons of the genetic programming approach is discussed.
 Keywords
Model Predictive Control (MPC);Data-driven Model;Genetic Programming;BEMS;
 Language
Korean
 Cited by
 References
1.
Agapitos, A., Brabazon, A., & O'Neill, M. (2012). Controlling overfitting in symbolic regression based on a bias/variance error decomposition, Parallel Problem Solving from Nature-PPSN XII, 438-447

2.
Al-Homoud (2001). M. S., Computer-aided building energy analysis techniques, Building and Environment, 36, 421-433 crossref(new window)

3.
ASHRAE (2011). ASHRAE Handbook-HVAC Applications. Atlanta, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.

4.
Braun, J. E., Klein, J. W. Mitchell, & Beckman, W. A. (1989). Applications of Optimal Control to Chilled Water Systems without Storage, ASHRAE Transactions 1989, 652-662

5.
Dolsma, J. M. (2007). Nonlinear Controller Design Based on Genetic Programming, Master's thesis, Technische Universiteit Eindhoven

6.
Gray, G. J., Murray-Smith, D. J., Li, Y., Sharman, K. C., & Weinbrenner, T. (1998). Nonlinear Model Structure Identification Using Genetic Programming, Control Engineering Practice, 6, 1341-1352 crossref(new window)

7.
IBPSA, Proceedings of the IBPSA (International Building Performance Simulation Association) conference('87, '91, '93, '95, '97, '99, '01, '03, '05, '07, '09, '11, '13), 1987-2013

8.
Ito, Y., Murakami, Y., Yonezawa, K., Nishimura, N., & Takagi, Y. (2008). Next Generation HVAC System, SICE Annual conference 2008, 2223-2228

9.
Koza, J. R. (1992). Genetic Programming: On the programming of computers by means of natural selection, ISBN 0-262-11170-5

10.
Kusiak, A., Xu, G., & Zhang, Z. (2014). Minimization of energy consumption in HVAC systems with data-driven models and an interior-point method, Energy Conservation and Management, 85, pp.146-153 crossref(new window)

11.
Lew T. L., Spencer, A. B., Scarpa, F., Worden, K., Rutherford, A., & Hemez, F. (2005). Identification of Response Surface Models using Genetic Programming, Mechanical Systems and Signal Processing, 20(8)

12.
Low, P., Kie, T., & Theng, L. B. (2009). Intelligent Control of Heating Ventilation and Air Conditioning Systems, ICONIP 2008 Part II, LNCS 5507, 509-516

13.
Marenbach, P., Buttenhausen, K. D., Freyer, S., Nieken, U., & Rettenmaier, H. (1997). Data-driven structured modelling of a biotechnological fed-batch fermentation by means of genetic programming, Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 211(5), 325-332

14.
McCarthy, J., Minsky, M., Rochester, N., & Shannon, C. (1955). A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence, AI Magazine, 27(4)

15.
Mitchell, T. M. (1997). Machine Learning, New York, McGraw-Hill

16.
Nishiguchi, J., Konda, T., & Dazai, R. (2010). Data-Driven Optimal Control for Building Energy Conservation, SICE Annual Conference 2010, 116-120

17.
Samuel, A. (1959). Some Studies in Machine Learning Using the Game of Checkers, IBM Journal, 3(3), 210-229 crossref(new window)

18.
See, L. A., Solomatine, D. P., Abrahart, R., & Toth, E. (2007). Hydroinformatics: computational intelligence and technological developments in water science applications- editorial, Hydrological Sciences Journal, 53(3), 391-396

19.
Solomatine, D. P., & Ostfeld, A. (2008). Data-driven modelling: some past experiences and new approaches, Journal of Hydroinformatics, 10(1), 3-22 crossref(new window)

20.
Takagi, Y., Yonezawa, K., Nishimura, N., Hanada, Y., & Yamazaki, K. (2009). Next Generation HVAC System for Office Buildings - The Optimal Control Structure for DHC Buildings, ICROS-SICE International Joint Conference 2009, 2002-2007

21.
Parasuraman, K., Elshorbagy, A., & Carey, S. K. (2007). Modelling the dynamics of the evapotranspiration process using genetic programming, Hydrological Sciences Journal, 52(3), 563-578 crossref(new window)

22.
Poli,. R., Langdon, W. B., & McPhee, N. F. (2008). A Field Guide to Genetic Programming

23.
Turing, A. (1950). Computing Machinery and Intelligence, Mind, 59, 433-460

24.
Waltz, J. P. (2000). Computerized Building Energy Simulation Handbook, Fairmont Press

25.
Winkler, S., Affenzeller, M., & Wagner, S. (2004). New Methods for the Identification of Nonlinear Model Structures Based upon Genetic Programming Techniques, Proceedings of the 15th International Conference on Systems Science, 1, 386-393

26.
Winkler, S., Efendic, H., Re, D. L., Affenzeller, M., & Wagner, S. (2007). On-line modelling based on genetic programming, International Journal of Intelligent Systems Technologies and Applications, 2(2), 255-270 crossref(new window)

27.
Zhu, Y. (2006). Applying Computer-based Simulation to Energy Auditing: A Case Study, Energy and Buildings, 38, 421-428 crossref(new window)