Advanced SearchSearch Tips
Free Vibrations of Thin Shells with Isogeometric Approach
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Architectural research
  • Volume 16, Issue 2,  2014, pp.67-74
  • Publisher : Architectural Institute of Korea
  • DOI : 10.5659/AIKAR.2014.16.2.67
 Title & Authors
Free Vibrations of Thin Shells with Isogeometric Approach
Lee, Sang Jin;
  PDF(new window)
Free vibration analysis of thin shells is carried out by using isogeometric approach. For this purpose, a thin shell element based on Kirchhoff-Love shell theory is developed. Non-uniform rational B-spline surface (NURBS) definition is introduced to represent the geometry of shell and also used to derive all terms required in the isogeometric element formulation. Gauss integration rule is used for stiffness and mass matrices. The present shell element is then applied to examine vibrational behaviours of thin plate and shell structures. From numerical results, it is found be that reliable natural frequencies and associated mode shapes of thin shell structures can be predicted by the present isogeometric shell element.
Thin Shell;Isogeometric Analysis;Free Vibration;B-spline;NURBS;
 Cited by
Topology Optimization for Plane Structures using Isogeometric Approach, Journal of the Architectural Institute of Korea Structure & Construction, 2016, 32, 2, 3  crossref(new windwow)
ABAQUS manual, Theory and Users Manuals. Hibbit, Karlson and Sorensen, Inc., Version 5.7.

Cottrell, J.A., Bazilevs, Y. and Hughes, T.J.R. (2009). Isogeometric Analysis: Towards Integration of CAD and FEA. Wiley.

De Boor, C. (1978) A Practical Guide to Splines. Springer.

Flugge, W. (1934) Statik und Dynamik der Schalen. Springer-Verlag, Berlin, Germany.

Huang, H.C. and Hinton, E. (1986) A new nine node degenerated shell element with enhanced membrane and shear interpolation. Int. J. Num. Meth. Engng., 22, pp.73-92. crossref(new window)

Hughes, T.J.R. (1987) The Finite Element Method- Linear Static and Dynamic Finite Element Analysis. New Jersey: Prentice-Hall.

Hughes, T.J.R., Cottrell, J. A. and Bazilevs, Y. (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng., 194(39-41), pp.4135-4195. crossref(new window)

Hughes, T.J.R. and Evans J.A. (2010). Isogeometric analysis. ICES Report 10-18, The Institute of Computational Engineering and Science, University of Texas Austin.

Kanok-nukulchai, W. (1979) A simple and efficient finite element for general shell element. Int. J. Num. Meth. Engng. 14, pp.179-200. crossref(new window)

Lee, J.K., Leissa, A.W. and Wang, A.J. (1981) Vibrations of cantilevered shallow cylindrical shells of rectangular planform. J. Sound and Vibration, 78, pp.311-328. crossref(new window)

Lee, S.J. and Kim, H.R. (2012) Vibration and buckling of thick plates using isogeometric approach. Architectural Research, 15, pp. 35-42. crossref(new window)

Lee, S.J. and Han, S.E. (2001) Free-vibration analysis of plates and shells with a nine-node assumed natural degenerated shell element. Journal of Sound and Vibration, 241, pp.605-633. crossref(new window)

Lee, S.J. and Park, K.S. (2013) Vibrations of Timoshenko beams with isogeometric approach. Applied Mathematical Modelling. 37(22), pp.9174-9190. crossref(new window)

Leissa, A.W. (1969) Vibrations of plates. NASA SP-160, Washington D.C.

Leissa, A.W. (1973) Vibrations of shells. NASA SP-288, Washington D.C.

Liew, K.M. (1992) Use of two-dimensional orthogonal polynomials for vibration analysis of circular and elliptical plates. J. Sound and Vibration, 154, pp.261-269. crossref(new window)

Liew, K.M. (1995) Research on thick plate vibration: a literature survey. J. Sound and Vibration, 180, pp.163-176. crossref(new window)

Love, A.E.H. (1888) The small free vibrations and deformation of a thin elastic shell, Philosophical transactions of royal society of London A, 179, pp.491-549. crossref(new window)

Qatu, M.S. (1992) Review of shallow shell vibration research, Shock Vibration Digest, 24, pp.3-15.

Rayleigh, J.W.S. (1894), Theory of sound. MacMillan Inc., London, England