JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Stability and accuracy for the trapezoidal rule of the Newmark time integration method with variable time step sizes
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Stability and accuracy for the trapezoidal rule of the Newmark time integration method with variable time step sizes
Noh, Yong-Su; Chung, Jin-Tae; Bae, Dae-Seong;
  PDF(new window)
 Abstract
Stability and accuracy for the trapezoidal rule of the Newmark time integration method are analyzed when variable time step sizes are adopted. A new analytic approach to stability and accuracy analysis is also proposed for time integration methods with variable time step sizes. The trapezoidal rule with variable time step sizes has the "actual" unconditional stability which is the same as that of the method with constant time step sizes. However, the method with variable time step sizes is first-order accurate while the method with constant time step sizes is second-order accurate. accurate.
 Keywords
Time Integration;Variable Time Step Size;Stability;Accuracy;
 Language
Korean
 Cited by
 References
1.
Appl. Math. Comput., 1977. vol.3. pp.189-210

2.
Solving Ordinary Differential Equations Ⅰ, 1987.

3.
Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, 1989.

4.
J. Engrg. Mech. Div., 1959. vol.ASCE 85. EM3, pp.67-94

5.
Analysis of Pipe Whip., 1979. pp.25-29

6.
Analysis of Pipe Whip., 1979.

7.
1982.

8.
Comput. Methods Appl. Mech. Engrg., 1979. vol.17/18. pp.277-313

9.
Pressure Vessels and Piping:Design Technology, A Decade of Progress, 1982.

10.
Comput. Methods Appl. Mech. Engrg., 1980. vol.22. pp.241-258

11.
Comput. Methods Appl. Mech. Engrg., 1980. vol.23. pp.259-279

12.
Comput. Methods Appl. Mech. Engrg., 1985. vol.49. pp.299-318

13.
Comput. Methods Appl. Mech. Engrg., 1990. vol.81. pp.151-172

14.
Int. J. Numer. Methods Engrg., 1991. vol.32. pp.1057-1077

15.
Int. J. Numer. Methods Engrg., 1984. vol.20. pp.1529-1552

16.
Earthquake Engrg. Struct. Dynam, 1991. vol.20. pp.871-887

17.
Earthquake Engrg. Struct. Dynam., 1992. vol.21. pp.555-571

18.
Commun. Numer. Methods Engrg., 1993. vol.9. pp.873-881

19.
ASME J. Appl. Mech., 1993. vol.60. pp.371-375

20.
Comput. Methods Appl. Mech. Engrg., 1995. vol.126. pp.155-178

21.
Earthquake Engrg. Struct. Dynam., 1977. vol.5. pp.283-292

22.
Int. J. Numer. Methods Engrg., 1981. vol.15. pp.1562-1566